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ABSTRACT

Sparse signal approximations are approximations that use only a
small number of elementary waveforms to describe a signal. In this
paper we proof the convergence of an iterative hard thresholding al-
gorithm and show, that the xed points of that algorithm are local
minima of the sparse approximation cost function, which measures
both, the reconstruction error and the number of elements in the rep-
resentation. Simulation results suggest that the algorithm is compa-
rable in performance to a commonly used alternative method.

Index Terms— Sparse Approximations, Iterative Thresholding,
L0 Regularisation.

1. INTRODUCTION

Sparse signal approximations have over the last decade gained in
popularity in the signal processing community and a wide range of
applications such as source coding, denoising, source separation and
pattern analysis have bene ted from progress made in this area. The
problem of sparse signal approximation is to the solution of the lin-
ear equation:

x =
X
i

φiyi + e,

where x is the signal of interest and {φi} a set of elements, com-
monly called the dictionary. For convenience we use the linear op-
erator de ned as ΦY =

P
i
φiyi. We assume Y ∈ H, where H is

a Hilbert space. For a given x and Φ the sparse approximation prob-
lem is to nd coef cient set Y = {yi} minimising the cost function:

C(Y ) = ‖x− ΦY ‖22 + λ‖Y ‖0, (1)

where ‖Y ‖0 is de ned as |Γ1(Y )|, where Γ1(Y ) = {yi : y1 �= 0}
is the set of non-zero coef cients and |Γ1(Y )| is the size of this set.
‖Y ‖0 is therefore the number of non-zero coef cients.

The problem of minimising equation (1) for general x and Φ
is known to be an NP-hard optimisation problem [1]. Therefore,
two common themes have been adopted to approximately solve the
problem, greedy optimisation strategies and relaxation of the cost
function. Greedy strategies, such as Matching Pursuit (MP) type
algorithms [2], are iterative procedures and possess no guarantee of
optimising the above cost function, however, they are often relatively
fast and have therefore been used extensively in practical applica-
tions. Relaxation methods, which replace the ‖Y ‖0 constraint by
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a differentiable cost function, such as the FOCUSS algorithm [3]
or the Basis Pursuit Denoising method [4] often offer better perfor-
mance, but are computationally demanding.

Recently, iterative thresholding algorithms have been proposed
for convex regularisations of the above problem as in [5] and [6],
while in [7] an iterative hard thresholding algorithm was proposed.
Unfortunately, the algorithm as proposed in [7] is in general unstable
and no convergence analysis was presented. This is the task we set
out to achieve in this paper. What is more, we also show, that the
iterative hard thresholding algorithm does decrease the above cost
function in each step and is guaranteed, under conditions on the sin-
gular values of Φ to converge to a local minimum of equation (1).

The paper is organised as follows. In the next section we pro-
pose a surrogate objective function replacing equation (1). The min-
imum of this surrogate function is shown to be achieved using hard
thresholding of a Landweber iteration. Iterating this step is shown to
decrease equation (1). Section 3 presents a convergence proof that
guarantees that the algorithm converges. Finally, section 4 presents
an experimental evaluation of the algorithm.

2. SPARSE APPROXIMATION AND OPTIMISATION
TRANSFER

2.1. Optimisation Transfer

Instead of optimising equation (1), which is NP-hard, let us intro-
duce a surrogate objective function as proposed in [9]:

CS(Y,A) = ‖x−ΦY ‖22+λ‖Y ‖0−‖ΦY −ΦA‖22+‖Y −A‖22. (2)

Note that C(Y ) = CS(Y, Y ). Equation (2) can be rewritten as:

CS(Y,A) =
X
i

[y2i − 2yi(Ai + φ
H
i x− φH

i ΦA) + λ|yi|0]

+ ‖x‖22 + ‖A‖22 − ‖ΦA‖22,

where |yi|0 is one if yi �= 0 and zero otherwise. Now the yi are de-
coupled. Therefore, the minimum of equation (2) can be calculated
by minimising with respect to each yi individually. To derive the
minimum, we distinguish two cases, yi = 0 and yi �= 0. In the rst
case, the element wise cost is (ignoring the constant terms) λ. In the
second case the cost is (again ignoring the constant terms):

y2i − 2yi(Ai + φ
H
i x− φH

i ΦA),

the minimum of which is achieved at

y�
i = Ai + φ

H
i x− φH

i ΦA.
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Comparing the cost for both cases (i.e yi = 0 and yi = Ai +
φH

i x− φH
i ΦA) we see that the minimum of equation (2) is attained

at:
Y = Hλ0.5(A+Φ

H(x− ΦA)),
where we use the element-wise hard thresholding operator:

Hλ0.5(yi)

j
0 if |yi| ≤ λ0.5

yi if |yi| > λ0.5.

Note that the minimum need not be unique whenever Ai + φ
H
i x −

φH
i ΦA = λ0.5. However, using a strict inequality in the de nition of

the thresholding operator as done here guarantees a unique update.
The iterative hard thresholding algorithm is now de ned as:

Y n+1 = Hλ0.5(Y
n +ΦH(x−ΦY n)). (3)

This is the same algorithm suggested in [7], however, we found that
this algorithm is not stable in general. In this paper we show that a
suf cient requirement for the above algorithm to converge is that the
eigenvalues of the linear operator I−ΦHΦ are 0 < λ(I−ΦHΦ) ≤
1. Using the singular value decomposition of Φ = USV H we can
write (I−ΦHΦ) = (I−V SHSV H) = (V (I−SHS)V H), so that
we can express the above requirement as a restriction on the singular
values σ(Φ) of Φ, i.e. σ(Φ) < 1.

2.2. Relationship Between Optimisation of the Surrogate Func-
tion and the Original Cost Function

In this subsection we prove the following lemma:

Lemma 2.1. Let Y n+1 = Hθ(Y
n+ΦH(x−ΦY n)). The sequences

(C(Y n))n and (CS(Y n+1, Y n))n are non-increasing.

Proof. De ne the operator L =
√
I− ΦHΦ. Then:

C(Y n+1) ≤ C(Y n+1) + ‖L(Y n+1 − Y n)‖22
= CS(Y n+1, Y n)

≤ CS(Y n, Y n)

= C(Y n)

≤ C(Y n) + ‖L(Y n − Y n−1)‖22
= CS(Y n, Y n−1),

where the rst equality is the de nition of CS and the second in-
equality is due the fact the Y n+1 is the minimiser of CS(Y,Y n).

3. CONVERGENCE PROOF

We have shown in the previous section that the iterative hard thresh-
olding algorithm is guaranteed not to increase the cost function in
equation (1). In this section we prove an even more interesting prop-
erty of the algorithm, namely, the algorithm converges to a local
minimum of equation (1).

More formally, we have the following theorem:

Theorem 3.1. Assume Y ∈ H, where H is a Hilbert space. If
C(Y 0) < ∞ and if the eigenvalues of the operator L2 obey 0 <
λ(I−ΦHΦ) ≤ 1, then the sequence (Y n)n de ned by the iterative
procedure in equation (3) converges to a local minimum of equation
(1).

Note that the condition C(Y 0) < ∞, which we use in lemma
3.2 is only really of importace in in nite dimensional spaces, where
it implies that only a nite number of y0i are non-zero.

To prove theorem 3.1 we need a few lemmas. To simplify nota-
tion we introduce the non-linear operator TY = Hθ(Y + Φ

H(x −
ΦY )). 1

Lemma 3.2. ∀ ε > 0, ∃N such that ∀ n > N, ‖Y n+1−Y n‖22 ≤ ε.

Proof. We show that
PN

n ‖Y n+1 − Y n‖22 converges, which im-
plies the lemma [8, Theorem 3.23]. This is done by showing thatPN

n
‖Y n+1 − Y n‖22 is monotonically increasing and bounded. We

have monotonicity by:

N−1X
n=1

‖Y n+1 − Y n‖22 + ‖Y N+1 − Y N‖22

≥
N−1X
n=1

‖Y n+1 − Y n‖22.

and boundedness follows from:

NX
n=0

‖Y n+1 − Y n‖22 ≤ 1

c

NX
n=0

‖L(Y n+1 − Y n)‖22 (4)

≤ 1

c

NX
n=0

[C(Y n)−C(Y n+1)]

=
1

c
(C(Y 0)− C(Y N+1))

≤ 1

c
C(Y 0),

(5)

where c is a lower bound on the spectrum of the linear operator LHL
where we use L =

√
I− ΦHΦ, which by assumption is strictly

greater than zero. ‖L(Y n+1 − Y n)‖22 ≤ C(Y n) − C(Y n+1) (see
proof of Lemma 2.1) is here used to derive the second inequality.

We also need the following xed point condition:

Lemma 3.3. Let φH
i be the ith row of ΦH and de ne the sets Γ0 =

{i : y�
i = 0} and Γ1 = {i : y�

i > λ0.5}. Then at a xed point of
algorithm 3, i.e at points such that Y � = T (Y �) we have

|φH
i (x− ΦY �)|

j
= 0 if i ∈ Γ1
≤ λ0.5 if i ∈ Γ0.

Proof. This is clear from looking at Y � = T (Y �) element wise.
Inserting the algorithm into the xed point condition we have:

y�
i = Hλ0.5(y

�
i + φ

H
i (x− ΦY �)),

If y�
i = 0, then |φH

i (x − ΦY �)| ≤ λ0.5. Similarly for i ∈ Γ1 we
have :

y�
i = y�

i + φ
H
i (x− ΦY �),

where we have dropped the thresholding operator, as y�
i �= 0.

1A less formal proof could be derived based on Lemma 2.1. As
C(T (Y )) ≤ C(Y ), the cost function converges, however, C(T (Y �)) =
C(Y �) does not necessarily imply T (Y �) = Y �. By changing the algo-
rithm to guarantee that if C(T (Y n)) = C(Y n), then Y n+1 = Y n, con-
vergence can be guaranteed. However, the more formal proof presented here,
shows that the algorithm converges even without such a modi cation.
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Lemma 3.4. A xed point Y � = TY � is a local minimum of equa-
tion (1).

Proof. Given a xed point Y � = TY � and any small perturbation
|∂hi| < ε, for some ε > 0. We show that C(Y � + ∂h) > C(Y �).
However, we rst show ∃ ε > 0 : ∀ ‖∂h‖ < ε the following in-
equality holds:

CS(Y � + ∂h, Y �) ≥ CS(Y �, Y �) + ‖∂h‖22.

CS(Y � + ∂h, Y �)− CS(Y �, Y �) =X
i

(yi+ ∂hi)
2− 2(yi+ ∂hi)yi − 2(yi+ ∂hi)(Φ

H
x−ΦHΦY �)i

− y2i + 2y
2
i + 2yi(Φ

H
x−ΦHΦY �)i − λ|yi|0 + λ|yi + ∂hi|0.

After simpli cation of the above equation, we split the summation
into two parts, one for Γ0 = {i : yi = 0} and one for Γ1 = {i :
yi �= 0}. We get:

CS(Y � + ∂h, Y �)− CS(Y �, Y �) =

‖∂h‖22 +
X
Γ0

λ|∂hi|0 − 2∂hi(Φ
H
x− ΦHΦY �)

+
X
Γ1

−2∂hi(Φ
H
x− ΦHΦY �)

For a xed point Y � the last line is zero as stated in lemma 3.3. For
the summation over Γ0 we have to consider two cases, if ∂hi =
0, then this term is zero. If ∂hi �= 0, then choosing |∂hi| ≤
| λ

2(φH

i
(x−ΦY ))

| guarantees the non-negativity of this term. Note

that we also need the condition that |∂hi| ≤ yi for all i ∈ Γ1
such that yi − hi �= 0. This condition is required when split-
ting the cost function |yi − ∂hi|0. Therefore ∃ ε : ∀ ∂h, |∂hi| ≤
ε, CS(Y � + ∂h, Y �) ≥ CS(Y �, Y �) + ‖∂h‖22. Using this we get:

C(Y � + ∂h) = CS(Y � + ∂h, Y �)− ‖L∂h‖22
≥ CS(Y � + ∂h, Y �)− ‖∂h‖22 ≥ CS(Y �, Y �) = C(Y �)

Proof of theorem 3.1. In lemma 3.2 take ε < λ. If yn
i > λ0.5 and

yn+1
i = 0, then ‖Y N+1 − Y N‖22 ≥ λ, which by lemma 3.2 is

impossible for n > N for some N . Therefore, for large N , the
set of zero and non-zero coef cients will not change and |yn

i | >
λ0.5,∀i ∈ Γ1, n > N . For yn

i , i ∈ Γ1 the algorithm then reduces
to the standard Landweber algorithm with guaranteed convergence
[10]. Note that the largest (smallest) eigenvalue of (I − ΦHΦ) will
not increase (decrease) if we delete columns from Φ ensuring that
the eigenvalue constraint required for the Landweber convergence is
satis ed.

Also, by lemma 3.4 the xed point is a local minimum of equa-
tion (1).

4. EXPERIMENTAL EVALUATION

In [7], where the iterative hard thresholding approach was rst sug-
gested, results are presented that study the performance of the method
in the case where the signal is known to have an exact sparse rep-
resentation and the measure used is the probability of nding that
representation.
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Fig. 1. The test signal (top) and the comparison of reconstruction
error in dB vs. the number of non-zero coef cients used (bottom).
Also shown are the different thresholds λ0.5 used to calculate each
of the points for the thresholding algorithm.Slowly increasing the
threshold from zero to λ0.5 during the rst 500 iterations produced
the results shown with the dashed line. The dotted line shows the
results for achieved with the Matching Pursuit (MP) algorithm.
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Fig. 2. Plot of the convergence of the algorithm for the threshold
values of 0.015. Top plot is the cost function whilst the lower plot
shows the normalised diference ln((C(Y n)−C(Y n+1))/C(Y n)).

Here we present additional and complementary results for a more
general signal, for which it cannot be assumed that an exact sparse
representation is available. In our experiments we used the test sig-
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Fig. 3. Ordered magnitude of the coef cients for different thresh-
olds. Also shown are the MP coef cients (dotted).

nals provided with the atomizer toolbox [11], as these have often
been used for similar algorithms and therefore can be seen as a ‘stan-
dard’ benchmark. We generated test signals of length 512 and nor-
malised the signal to unit L2 length. We used the same toolbox to
generate a six times overcomplete Wavelet packed dictionary con-
taining Daubechies wavelets with 16 vanishing moments. The dic-
tionary was then multiplied by a scalar, such that ‖Φ‖2 < 1.

We run the algorithm for 10 different threshold values λ0.5 ∈
{0.1, 0.05, 0.045, 0.04, 0.035, 0.03, 0.025, 0.02, 0.015, 0.01} and a
total of 10 000 iterations. We started the algorithm each time with a
zero coef cient vector. For comparison we also used the Matching
Pursuit algorithm [2]. We also tried a slightly modi ed version of the
iterative hard thresholding algorithm, in which we slowly increased
the threshold from zero to λ0.5 during the rst 500 iterations. In all
our experiments, this modi cation improved the results.

The results obtained for the ‘WernerSorrows’ signal are shown
in gure 1, where we plot the L2 reconstruction error in dB vs. the
number of non-zero coef cients. The convergence is shown in g-
ure 2 for λ0.5 = 0.015, where we also plot the normalised gradient

ln (C(Y n)−C(Y n+1))
C(Y n)

. The jumps in the normalised gradient are as-
sociated with changes in the set of non-zero coef cients. In gure 3
we further show the ordered magnitude of the non-zero coef cients
for a range of λ0.5 values.

The main conclusions to be drawn from these experiments are:

• When initialising the algorithm with a zero vector the results
are comparable to Matching Pursuit.

• Convergence can be slow.

• The convergence rate depends on the threshold.

• The computational complexity of each iteration of the algo-
rithm is comparable to the complexity of each iteration of
Matching Pursuit.

• Increasing the threshold also increases the largest non-zero
coef cients in the results and we found an af ne relationship
between the variance of the non-zero coef cients and λ0.5.

• Using an adaptive threshold during the rst iterations can sig-
ni cantly improve algorithm performance.

5. CONCLUSION

Solving the L0 penalised optimisation problem studied in this paper
is NP hard. Previous approaches either relax the L0 penalty func-
tion (for example they use L1 instead) or use greedy heuristics. The

iterative greedy algorithm studied here is to our knowledge the rst
greedy algorithm that directly operates by iteratively reducing the
original cost function and we have shown that this algorithm is guar-
anteed to nd a local minimum of this cost function. Obviously,

nding a local minimum is not guaranteed to nd a good solution
and it is also not clear, whether the algorithm is able to nd the
global minimum at all. For example, should the global minimum
contain a coef cient that is smaller than the threshold, this solution
is not reachable by the algorithm. With the current implementa-
tion it was found that the convergence of the method can be slow.
This might be overcome by including an overrelaxation parameter
into the update, this would however require a detailed convergence
analysis. Other acceleration methods from the literature on iterative
optimisation procedures might also be investigated. We found ex-
perimentally that when starting the algorithm with a zero vector the
performance of the simple iterative procedure was comparable to the
Matching Pursuit algorithm. However, the experiments with an in-
creasing threshold show that additional performance increases are
possible. This approach and different initialisations of the method
remain to be investigated in more detail in the future.
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