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ABSTRACT

The emerging theory of compressed sensing (CS) has led to the re-
markable result that signals having a sparse representation in some
known basis can be represented (with high probability) by a small
sample set, taken from random projections of the signal. Notably,
this sample set can be smaller than that required by the ubiquitous
Nyquist sampling theorem. Much like the generalized Nyquist sam-
pling theorem dictates that the sampling rate can be further reduced
for the representation of bandlimited signals, this paper points to
similar results for the sampling density in CS. In particular, it is
shown that if additional spectral information of the underlying sparse
signals is known, colored random projections can be used in CS in
order to further reduce the number of measurements needed. Such a
priori information is often available in signal processing applications
and communications. Algorithms to design colored random projec-
tion vectors are developed. Further, an adaptive CS sampling method
is developed for applications where non-uniform spectral character-
istics of the signal are expected but are not known a priori.

Index Terms— Compressed sensing, sparse signals, colored
noise, random projections, signal reconstruction.

1. INTRODUCTION

Compressed sensing provides a new way to acquire and represent
sparse signals that requires less sampling resources than traditional
approaches [1, 2, 3]. Given a T sparse signal z € R~ on some
basis U = [¢)1,%2,...,¥nN], such that z can be approximated by a
linear combination of T vectors from ¥ with T' < N, the theory
of compressed sensing shows that x can be recovered from M ran-
dom projections with high probability when M = CT' log N < N,
where C' > 1 is the oversampling factor. The projections are given
by y = &z, where ® is a M x N random measurement matrix with
its rows incoherent with the columns of ¥. Commonly used ran-
dom measurement matrices for CS are random Gaussian matrices
(®i; € {N(0,1/N)), Rademacher matrices (®;; € {+1/v/N})
and partial Fourier matrices. In [2], it is shown that a matrix satisfy-
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ing the incoherent condition is so ubiquitous that “nearly all matrices
are CS matrices”.

Signal reconstruction is achieved by solving a /1 norm mini-
mization problem: min ||6]]; subjectto @VO = y. V = OV is
called the holographic basis. Minimizing the /1 norm yields solu-
tions that are zero except at a small number of isolated values and
can be solved by efficient optimization algorithms which include Ba-
sis Pursuit, Matching Pursuit (MP), and Orthogonal Matching Pur-
suit (OMP) [3, 4]. MP and OMP are greedy-based algorithms that
iteratively reconstruct the sparse signal.

CS relies on the fundamental assumption that the underlying sig-
nals are sparse on some known basis ¥ and that the measurements
are i.i.d. random projections [2]. The random projections and the
subsequent signal reconstruction do not utilize any characteristics of
the signal other than the sparsity. In many applications, however, ad-
ditional a priori information on the underlying signal characteristics
is available, in addition to their sparsity. Most images have higher
energy in low frequency bands; signals in narrowband communica-
tion have well defined spectral shapes, etc.

This paper shows that if the spectral characteristics of the un-
derlying signals are not expected to be uniform, we can recover the
signal with much less measurements than expected by conventional
CS, much like the generalized Nyquist sampling theorem dictates
that the sampling rate can be further reduced for the representation
of a bandpass signal [5]. Such result is in accordance with similar
conclusions drawn from a different context [6, 7]. To this end, this
paper extends the projection mechanisms in CS. Rather than using
i.i.d. spectrally white noise projections, colored noise with well de-
fined spectral shapes are used in the projections. Exact knowledge of
the signal spectral structure is not required. Furthermore, an adap-
tive CS sampling method is developed for applications where non-
uniform spectral characteristics of the underlying signal are expected
but are not known a priori.

2. CS WITH COLORED RANDOM PROJECTIONS

Consider a discrete time signal = = [zo,z1,- -+ ,zn-1]7 € RV, z
can be expressed in the Fourier domain F as:

N-1

x(n) =y (@)™, (1)

=0

where (i) € C™V. Let the measurement matrix be & = [®3; ®7;- - - ;
®F,_ 1| with ®; = [®s0, Py1,- -+, Pinv—1]T fori =0,1,--- , M — 1.
Without loss of generality, assume ®;; € ® to be i.i.d. normal dis-
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tributied samples. From [8], if x is sparse in a known basis W, then
x can be reconstructed from the set of random projections y = ®x
when the number of projections M > CTlog N with constant
C>1

Let W be the Fourier transform matrix with Wi; = e
Given the Fourier transform of ®, & = ®W7”, y can be expressed
as:

—j2mij /N

F ok — —1 A 1 - * A
y=oz =" (W H*w 1m:N<IJ 2. 2)
Now suppose there exists a discrete time signal zz € RY that is

both T'-sparse in ¥ and bandpass in F, that is:

2B

zp(n) = g e?> N (3)

=1

where 2, € CV, k; € Q = [k1, k1 + B —1U[N — ki, N — ki +
B — 1] with || = 2B < Nand 0 < k1 < N/2. The following
theorem applies.

Theorem 2.1. Given a signal xp that is sparse in ¥ and band-
pass in F, as defined above, then x g can be reconstructed with high
probability by CS using colored random projections such that the
projection vectors and x g have the same pass-band and the number
of measurements M satisfies the condition

M > CTlog2B. (4)

Proof Let the measurement matrix A = [AZ;AT; - AT, ]
with A; = [Ai07Az’1, s ,Ai(Nfl)}T fort =0,1,--- ,M — 1be
the ensemble of samples from a band-pass normal distribution. The
Fourier transform of A; is given by

A = WA,
= [Ow~'707Ai(k1)7---7Ai(k1+Bfl)707"' ,O,
Aty Digv—k+B-1),0,...,0]".

By expressing each row of A and xp in the Fourier domain and
removing all the zero entries corresponding to the stop-band, y can
be represented as:

1
= A = —I'z 5
Yy s = s, &)
vi/hereF = [F1T§ ng e %F%}—l] with [ = [Af,, - 7AZ(k1+B—1)7
A:(kal)v s 7A:(N—k1+871)]T and 25 = [k, , Thy+B-1,
TN—kyy ,;%N,kﬁB,l]T. I';; € T has the same distribution

as ®f; € ®*. From (2) and (5), it is easy to see that only M >
CT log 2B measurements are enough to reconstruct £g and then
g accordingly. O

Theorem 2.1 shows that when the signal has a non-uniform spec-
trum, the number of necessary measurements can be reduced by us-
ing colored random projections. The measurement matrix A con-
tains bandlimited colored random vectors. As an example, Fig. 1(a)
shows a realization of a 1024-point colored random vector, (b) its
colored spectrum and (c) the spectrum of an i.i.d random projection
vector for comparison. The colored random projection vector has its
energy concentrated in the frequency band 0.15 < w < 0.35.

Colored random projections can be thought of as bandpass type
signal filtering, thus they extract the important frequency contents
of the signal and fewer measurements would suffice to capture the
salient information of the signal of interest. Given ®, any CS re-
construction algorithm can be used to reconstruct « g from the set of
colored random projections.

Note that the set of colored random projections leads to the holo-
graphic dictionary V' equal to A = (AW')*, where the nonzero
entries only exist on columns ¢ € (). This effectively reduces the
search space needed to find the sparse representation of the signal,
which in turn reduces the number of necessary measurements. Com-
pared with conventional CS, the structure of V' from colored random
projections leads to faster convergence rate when using iterative re-
construction algorithms.
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Fig. 1. (a) Colored random projection vector; (b) Spectrum of the
colored vector; (¢) Spectrum of an i.i.d random vector; (d) Spectrum
of the colored random vector after binarization.

3. GENERATION OF COLORED RANDOM VECTORS

If the spectral profile of the signal to be reconstructed is known, col-
ored random projection vectors can be generated via the structure
shown in Fig. 2, where the bandpass filter is tailored to match the
spectral profile of the signal. The filter h(n : f., By) is a function
of the signal bandwidth B,, and central frequency f.. The projec-
tion vectors can be taken from non-overlapping segments of the fil-
ter output z(n). Note that to construct the filter h(n : fe, Buw), only
the upper bound and lower bound of the signal frequency band are
needed. However, as it will be shown later, the generation of a de-
sired colored projection vector does not require exact knowledge of
the signal’s spectrum.

z(n)

—

w(n)

—» Wn:f,B)

Bandpass filter
Fig. 2. Generation of colored random projection vectors.

Real-world signals are not strictly bandlimited. It is thus not nec-
essary to design colored random projection vectors that have strict
bandlimited characteristics, nor is it desirable. It is more favorable
to design them having energy throughout all frequencies but having
higher energy concentration on a limited band. Projection vectors
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designed in this fashion will improve the robustness of CS recon-
struction as the random vectors contain all frequency components.

A simple and effective method to generate colored random pro-
jection vectors having such desired spectrum structure is to quantize
the output z(n) to a limited number of levels. Quantization will
preserve the spectral structure of the vector. Figure 1(d) shows the
spectrum of the vector in Fig. 1(a), after it is quantized to 2 levels.

Quantization is also desirable for simplicity in the hardware im-
plementation. The random projection vectors with limited levels can
simplify the computation of the projections. The projection vectors
can be further normalized. In the following discussion, we will use
normalized binary colored random projection vectors.

From the above discussion, it is clear that exact knowledge of
the location of the signal pass-band is not necessary. The filter h(n :
fe, Bw) can be designed in such a way that it matches the signal
spectrum approximately. With less accurate information of the sig-
nal spectrum, colored random projection still reduces the necessary
number of measurements, as is demonstrated in Sec. 5.

4. ADAPTIVE COLORED RANDOM PROJECTION

If the spectral characteristics of the signal are not known a priori,
an adaptive procedure to select the colored random projection vec-
tors can be developed. Let s € R be a discrete time signal with
unknown non-uniform spectrum. Let M be a binary N x N col-
ored random measurement matrix such that each row M; € M is
not only random in the spatial domain, but also has different spec-
tral energy concentration. M; is a normalized vector having its en-
ergy concentrated on a frequency band with central frequency f; and
bandwidth B,,. As the row index ¢ increases, the central frequency
fi increases linearly from 0 to 0.5 (normalized frequency). M; is
then used as colored random projection vector. The objective in the
design of M is to provide a set of projection vectors that is univer-
sal for signals with non-uniform spectra. To this end, an empirical
value for the filter bandwidth B,, is chosen to be B,, = 0.1 which
achieves measurement efficiency without loss of generality in most
situations. The value of B,, can be tuned according to the applica-
tion at hand. As an illustrative example, Fig. 3(a) shows a sample
of M with dimension 256 x 256. Fig. 3(b) shows the ensemble av-
erage of the spectra of four colored random vectors taken from the
3th, 70th, 140th, and 200th rows of the matrix for 100 realizations.
These row vectors exhibit their energy concentration at increasing
frequency locations.
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Normalized frequency

(a) (b)

Fig. 3. (a) Colored random matrix with rows having increasing fre-
quency energy concentration; (b) Spectrum ensemble average of four
colored random vectors pointed in (a).

To measure a signal s, a set of random vectors should be chosen
from M such that these vectors have a spectral profile that is similar

to that of the signal of interest. An adaptive procedure is developed
here to select these projection vectors iteratively when the spectral
characteristics of the signal of interest is unknown.

Let G = {G1,G2,--- ,Gr} be a set of L row vectors extracted
from M with the row index equally spaced and monotonically in-
creasing. Given B,,, L should satisfy the condition that B,, L ~ 1
in order to guarantee that the frequency components of the vectors
G € G span the entire frequency space. The projection of the signal
s on the set of vectors in G is then evaluated. The larger the absolute
value of the projection, the stronger the correlation between s and G}
(1 <1 < L). Let the index of the vector in G which is most corre-
lated with s be limae = arg; max |[(Gy, s)|. The signal s is expected
to have a similar spectral profile as that of the row vector Gy, ,, . in

g.
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Fig. 4. (a) Signal spectrum; (b) magnitude of projections (Gy, s);
(c) spectrum of Gy, .. ; (d) probability of successful reconstruction
using: (-) colored random CS; (- - - ) i.i.d. random CS.

As an example, Fig. 4(a) shows the spectrum of a 128-point
sparse signal. Eleven row vectors are extracted from M. Figure 4(b)
shows the absolute values of the projections. The 37th row vector in
M, with its spectrum shown in Fig. 4(c), is identified as the most
correlated to the signal in this iteration.

Next, Gi,,,, is excluded from G and two more random vec-
tors from M are added to G between Gy, —1 and G, +1. Let
ind(G1) be the row index of vector G; in M. The new vectors have
their row index in M as ¢ = | (ind(Gi,,,.,—1) + ind(Gi,,..))/2]
and i = | (ind(Gy,,,. ) + nd(G,, .. +1))/2], respectively.

With the updated G, the search for the vector that is most cor-
related to s is performed again. When no new vectors can be se-
lected around G, , new vectors are chosen such that the second
largest absolute value of the projection is found, and so on. This
procedure is repeated until M colored random projection vectors
are obtained. Note that in each iteration, only two new projections
need to be performed and the selection of the colored random vec-
tors adapts to the signal under measurement. The algorithm to select
the colored random vectors is computationally efficient and robust
to most signals with any non-uniform spectral shape. For band-
pass signals, the number of measurements M satisfies the condition
CTlog2B < M < CTlog N < N and only a small number of
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row vectors from M need to be chosen when the signal of interest is
sparse.

5. SIMULATION RESULTS

Simulation results are presented illustrating the effectiveness of col-
ored random projections in CS. All simulations use the Basis Pur-
suit algorithm for signal reconstruction. Simulation 1 verifies Theo-
rem 2.1. The signal of interest is a 128-point, bandpass sparse signal
s € R with a normalized pass-band 0.1 < w < 0.2 and N = 128,
The signal is sparse in the frequency domain with sparsity 7" = 10.
Five sets of colored Gaussian random vectors are generated from
bandpass normal distributions. In the frequency domain, each set has
a normalized bandwidth of § = 0.1,0.2,0.3,0.4, 0.5, respectively
(B8 = 0.5 corresponds to i.i.d. random noise). Furthermore, the
pass-band of the random projection vectors includes the pass-band
of the signal. Figure 5(a) shows the relationship between the number
of measurements and the probability of successful signal reconstruc-
tion. From left to right, each curve corresponds to an increasing 3.
At each data point for simulation, 1000 trials are performed and the
reconstruction probability is the fraction of the 1000 trials that re-
sults in success. A trial is successful when the error e = s — 5
between the original signal s and the reconstructed signal 5 has its
norm ||e||2 < 0.01]|s]|2-

e
@
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Fig. 5. (a) Reconstruction by colored random CS. (b) Number of
measurements versus log 2B,,.

Note that when [ increases, the necessary number of measure-
ments for high probability of signal reconstruction also increases.
Let B, be the bandwidth of the colored random projection vectors
with B, = BN. In Fig. 5(b), the x axis shows the number of mea-
surements for 99% of successful reconstruction; the y axis shows
log 2B,. The linear relationship between the number of measure-
ments M and log 2B, can be easily observed. Furthermore, the
constant C' in (4) is estimated to be 1.03 in this case.

Simulation 2 focuses on reconstructing the 128-point bandpass
signal within a frequency band 0.15 < w < 0.25 (see Fig. 4(a)). The
signal is sparse in the frequency domain with 7" = 10. A 128 x 128
colored random matrix is generated and adaptive colored random
projections are applied to measure the signal. Figure 4(d) shows the
relationship between the number of measurements and the probabil-
ity of successful signal reconstruction. For comparative purpose, the
probability of successful reconstruction as a function of the number
of i.i.d. Rademacher random projections is also shown in Fig. 4(d).
As can be seen from Fig. 4(d), colored random projections greatly
reduce the number of measurements needed for signal reconstruc-
tion.

In the third simulation, the objective is to show that colored ran-
dom CS is effective when the signal is not sparse in the frequency

domain, as long as the signal has energy concentration on some fre-
quency band. The input is a 128-point piecewise constant signal
‘Blocks’, as shown in Fig. 6(a). It has a sparse representation in the
Haar wavelet domain (7' =~ 20) and also has its energy concentrated
in the low frequency band. Adaptive colored random projections
are used to measure the signal. The simulation result is shown in
Fig. 6(b). On average, the number of measurements is reduced by
more than 10% by using colored random projections for the same
probability of successful signal reconstruction compared with i.i.d.
random projections.
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Fig. 6. (a) Signal ‘Blocks’; (b) Probability of successful reconstruc-
tion by: (-) adaptive colored random CS; (- - - ) i.i.d. random CS.

6. CONCLUSION

This paper shows that when a signal to be measured has a non-
uniform spectral profile, colored random projections can reduce the
number of CS measurements for successful signal reconstruction
compared with conventional CS. The algorithm to generate colored
random projection vectors is described. A computationally efficient
adaptive CS sampling method is developed for signals with unknown
non-uniform spectral profiles. These concepts can be easily extended
to 2-D signal reconstruction problems.
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