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ABSTRACT
We investigate a new audio denoising algorithm. Complex
wavelets protect phase of signals and are thus preferred in
audio signal processing to real wavelets. The block attenu-
ation eliminates the residual noise artifacts in reconstructed
signals and provides a good approximation of the attenuation
with oracle. A connection between the block attenuation and
the decision-directed a priori SNR estimator of Ephraim and
Malah is studied. Finally we introduce an adaptive block tech-
nique based on the dyadic CART algorithm. The experiments
show that not only the proposed method does eliminate the
residual noise artifacts, but it also preserves transients of sig-
nals better than short-time Fourier based methods do.

Index Terms— Complex Wavelets, Block, Ephraim and
Malah, CART

1. INTRODUCTION

Major signal denoising techniques are based on attenuation
in time-frequency signal representations. Short-time Fourier,
whose atoms have a xed scale, is until today the most popu-
lar time-frequency representation for audio signal processing.
Complex wavelet representation has a resolution in time and
frequency that depends on wavelet scales [12]. The short-time
Fourier representation is well suited for analyzing stationary
parts of signals, whereas the highly local wavelet atoms in
high frequency bands allow to capture transient features.
Most attenuation rules can be applied independently of the

representation used, although they were initially investigated
in one or another. The classic audio noise reduction methods
in the short-time Fourier representation include Wiener esti-
mator and “spectral subtraction” algorithms [11, 14]. They
generally lead to a residual noise artifact referred to as “mu-
sical noise” [4]. Ephraim and Malah proposed some noise
suppression rules, together with a decision-directed recursive
estimator of the a priori signal-to-noise ratio (SNR), that ef -
ciently reduce the musical noise [9, 10]. Their suppression
rules have been reinvestigated through years [4, 16] and a
non-causal a priori SNR estimator has been proposed [5].
The hard or soft thresholding technique [7] is a powerful

non-linear estimator often used in wavelet estimation. How-
ever, its direct application in audio signal denoising is prob-
lematic, as it creates some non-uniform “liquid noise” arti-
fact, also called “bird noise” [17]. Some improvement may be
achieved through more delicate thresholding functions [15].
A more effective way is to do attenuation using the Ephraim
and Malah decision-directed a priori SNR estimator [1, 6].

As reported in [17], astonishing as it is, all the existing refer-
ences employ real wavelets in audio signal processing, whereas
complex wavelets are more adapted as they protect signal
phase and thus help to reduce signi cantly the liquid noise
artifact.
In this paper, we investigate the block attenuation methods

that were initially applied in orthogonal wavelet signal repre-
sentations [3]. We study the block size and the thresholding
level in redundant time-frequency signal representations and
we see that the block attenuation eliminates the residual noise
artifacts through a temporal regularization and it provides a
good approximation of the attenuation with oracle. More-
over, we point out that there is a close connection between
the block attenuation and the decision-directed a priori SNR
estimator of Ephraim and Malah. Finally we develop a more
exible adaptive block technique based on the dyadic CART
algorithm [2, 8]. The experiments show that not only the
proposed method does eliminate the liquid noise, but it also
preserves transients of signals better than short-time Fourier
based methods with the Ephraim and Malah SNR estimator
do.

2. TIME-FREQUENCY REPRESENTATIONS

2.1. Estimation in Time-Frequency Representations
Let y be the noisy signal that is the sum of the desired signal
f and the noise ε, i.e., y[n] = f [n]+ ε[n], 0 ≤ n ≤ N − 1. We
assume in this paper that ε is stationary and white Gaussian
with zero mean, i.e., ε is independently identically distributed
(i.i.d.) as N (0, σ2), and it is independent of f .
DenoteB = {gm}m∈Γ a frame in either short-time Fourier

or complex wavelet representation. Decomposing y in B, we
obtain yB[m] = fB[m] + εB[m], ∀m ∈ Γ, where yB[m] = 〈y,
gm〉, fB[m] = 〈f, gm〉 and εB[m] = 〈ε, gm〉. The signal de-
noising consists in estimating fB[m] given yB[m], ∀m ∈ Γ,
i.e., f̂ =

∑
m∈Γ f̂B[m]g̃m =

∑
m∈Γ Dm(yB[m])g̃m, where

f̂ is the denoised signal, f̂B[m] = Dm(yB[m]) = a[m]yB[m]
is a diagonal estimate of fB[m] and B̃ = {g̃m}m∈Γ is the dual
frame.
The estimator that minimizes the risk E[‖f − f̂‖2

2] is the
attenuation with oracle written as

a[m] =
|fB[m]|2

|fB[m]|2 + σ2
. (1)

Using a hard thresholding or a soft thresholding opera-
tor de ned asDm(x) = ρH

T (x) = xI {|x| > T} orDm(x) =
ρS

T (x) = sgn(x)(|x|−T )+ with the threshold T = σ
√

2 loge N ,
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we can mimic the performance of the inaccessible attenuation
with oracle within a factor of 2 loge N [7].
2.2. Short-Time Fourier Frame
A short-time Fourier frame can be written as {gm}m∈Γ =
{w(t − un)eiξkt}(n,k)∈Z, for m = (n, k), where w(t) is a
short-time window and (un, ξk) are the sampling positions in
the time-frequency plane.
Denoising with short-time Fourier representation may gen-

erate a residual noise artifact, referred to as musical noise, that
is composed of sinusoidal components with random frequen-
cies [4].
2.3. Gabor Wavelet Frame
A wavelet frame is {gm}m∈Γ =

{
1√
aj

ψ
(

t−nu0aj

aj

)}
(j,n)∈Z

,

for m = (j, n), where ψ(t) is a wavelet function, u0 is the
time sampling step and a > 1 is the scale dilation factor.
A Gabor wavelet ψ(t) = w(t) exp(iηt) is obtained with a
Gaussian window w(t) = 1

(σ2
Gπ)1/4 exp

(
−t2

2σ2
G

)
. If σ2

Gη2 �
1, then ψ̂(w) ≈ 0 for w < 0. Such Gabor wavelets are
considered to be approximately analytic [12]. A wavelet at
scale s = aj is ψs(t) = ws(t) exp(iηt/aj), where ws(t) =

1√
aj

w(t/aj), a = 21/v is the dilation factor and v is number
of voices per octave. In contrast to the short-time Fourier rep-
resentation that has a xed time-frequency resolution, wavelets
have high resolution in time but low resolution in frequency at
high frequency bands, and vice versa at low frequency bands.
As an example, Fig. 2-a illustrates the Gabor wavelet repre-
sentation of some clarinet notes.
Denoising with wavelet representation may generate a resid-

ual noise artifact, referred to as liquid noise, that is composed
of randomly distributed wavelets which can appear at very
small scales.
The Gabor wavelets are more adapted for audio signal

processing than real wavelets because the former, like the
Fourier, separate module and phase components while the lat-
ter has module of coef cients necessarily oscillatory. Estima-
tors such as the attenuation with oracle and the hard thresh-
olding deal with the modules only. Hence the Gabor wavelets
protect phase of signals and generate less liquid noise.
Numerically we calculate the Gabor wavelet dual frame

{g̃m}m∈Γ from the Gabor wavelet frame {gm}m∈Γ = {ψj(n − u)}
j=0,1,...,J
u=0,1,...,K−1

+ {φJ(n − u)}u=0,1,...,K−1 using the Extrap-

olated Richarson algorithm [12]. Special attention should
be paid to avoid that the scaling function φ of the complex
wavelets covers all the negative frequencies. One should also
beware of the aliasing problem that may destroy the analyt-
icity of the Gabor wavelets. An approach that solves these
issues consists in implementing rst a real wavelet transform
WfR(u, s) = 〈f, ψR

s 〉, with ψR
s (t) = ws(t) cos(ηt/s), and

then obtaining the complexwavelet coef cientsWf(u, s) by
taking the analytical part ofWfR(u, s).

3. BLOCK ATTENUATION V.S. EPHRAIM-MALAH

3.1. Block Attenuation
Audio signal denoising by element-wise thresholding is likely
to create some residual noise artifacts, musical noise with

short-time Fourier representation [4] or liquid noise with wavelet
representation [17]. Some temporal regularization is needed
in order to attenuate the artifacts.
The basic motivation of the block attenuation is that, if

neighboring coef cients contain some signal, then it is likely
that the coef cients of current interest also do, and conse-
quently a lower threshold should be used [3]. The Neigh-
Block method [3] consists in grouping the wavelet coef -
cients at each scale into blocks bi and then using an identical
attenuation factor a[Bi] to all the coef cients in the block bi:

a[Bi] =
(

1 − λLσ2

S2
L

)
+

(2)

where Bi includes bi and is twice large, such overlapping re-
inforcing the redundancy, S2

L =
∑

n∈Bi
|yB[n]|2, L is the

size of Bi and λ is the thresholding level. Working in orthog-
onal wavelet representation, the author proposed the optimal
block size L = log N and thresholding level λ ≈ 4.5024.
For audio signal denoising, blocks of larger size are re-

quired since L = log N does not provide enough tempo-
ral regularization: it hardly attenuates the liquid noise. In
the following propositions, we see that our block attenuation
asymptotically converges to the attenuation with oracle; we
choose an appropriate block size L and thresholding level
λ; we see that the practical block attenuation eliminates the
residual noise artifact and remains a good approximation of
the attenuation with oracle. We rst develop the properties
in the orthogonal context and then extend the results to the
redundant time-frequency representations.

Proposition 1 (Asymptotical Convergence to Oracle). With
the thresholding level λ = 1, if ∀Bi, {|fB[m]|2}m∈Bi

are
asymptotically consistent, i.e., ∀Bi, ∀m ∈ Bi, |fB[m]|2 =
limL→+∞

∑
n∈Bi

|fB[n]|2/L, then the block attenuation de-
ned in Eq.(2) converges to the attenuation with oracle.
One can verify Prop. 1 noting that S2

L/L → |fB[m]|2 +
σ2.
Proposition 2 (Noise Distribution). Suppose that the under-
lying signal f is zero, i.e., y = ε. Assume that the frame B is
an orthogonal basis. Then we have√

LS2
L/(Lσ2) L−→ N (1, 1). (3)

Prop. 2 is a corollary of the Central Limit Theorem. In
practice, whenL ≥ 50we see that the distribution of S2

L/(Lσ2)
is very close to N (1, 1/L).

Proposition 3 (Block Size and Thresholding Level). Assume
that the frame B is an orthogonal basis. We have: (i) Given
a block Bi of size L large enough in which {|fB[m]|2}m∈Bi

are consistent, the “optimal” thresholding level is λ = 1 +
3
√

1/L. (ii) With λ = 1 + 3
√

1/L, a larger block reduces
the risk of f̂ , given that {|fB[m]|2}m∈Bi are consistent in the
block.

The “optimal” λ is a tradeoff between the maximum noise
removal that requires λ ≥ 1+3

√
1/L, a corollary of Prop. 2,

and the minimum signal distortion that demands λ as close to
1 as possible, which is deduced from Prop. 1. With a larger
L, not only the noise distribution in S2

L/(Lσ2) is closer to
N (1, 1/L), but the resulting λ is also closer to 1. For exam-
ple, withL = 50 and λ = 1+3

√
1/50 ≈ 1.42, we practically

III  870



Fig. 1. Ratio of the risk of the block attenuation and the risk
of the attenuation with oracle as a function of the SNR.

eliminate the residual noise artifact and the reconstructed sig-
nal is much less degraded than results of conventional thresh-
olding. Smaller λ, for instance λ = 1 + 2

√
1/L, is also an

option which distorts less the underlying signal and tolerates
more residual noise.

Proposition 4 (Practical Approximation to Oracle). The prac-
tical block attenuation is a good approximation of the attenu-
ation with oracle. For example, with L = 50 and λ = 1.42,
the risk of the block attenuation, denoted as rb, is at most
about 1.8 times of the risk of the attenuation with oracle, de-
noted as ro, given that ∀Bi, {|fB[m]|2}m∈Bi are consistent.

Let us verify Prop. 4 quickly. Rewrite the block attenu-
ation factor a[Bi] ≈ (1 − λσ2/(|fB[m]|2 + kσ2))+ with k
a random variable distributed as N (1, 1/L). One can verify
that a smaller k makes a[Bi] further from the oracle attenua-
tion factor a[m] de ned in Eq.(1). Thus it is enough to check a
“bad” case with k small, for example k = 1−3

√
1/L ≈ 0.57

that happens with a probability inferior to 0.1%. Fig. 1 plots
rb/ro as a function of SNR, given λ = 1.42 and k = 0.57.
We see that rb reaches the peak at about 1.8ro when the SNR
is about 0 dB. Indeed, with very high or very low SNR it is
immediate that a[Bi] ≈ a[m]. This is a signi cant improve-
ment in comparison with the hard and soft thresholding.
Minor modi cation should be made when B is not orthog-

onal. If B is a redundant Gabor wavelet frame, for example, it
is enough to use blocks of size L′ = KL, where K ≈ 6sσG

is the support of the Gabor wavelets.

3.2. Block Attenuation v.s. Ephraim-Malah
The decision-directed a priori SNR estimator of Ephraim and
Malah [9] can be written in a more general way as

ξ̂[m] = α
|f̂B[m − 1]|2

σ2
+ (1 − α)

( |yB[m]|2
σ2

− 1
)

+

(4)

where α is a weighting parameter. The rst term is an empir-
ical SNR of the previous coef cient and the second term is a
maximum likelihood estimate of the SNR of the current coef-
cient. This recursive estimator imports a temporal regular-
ization on ξ̂[m] with a causal smooth window exponentially
decreasing towards the past.
Thus both the block attenuation and the Ephraim andMalah

SNR estimator use regularization in time. The former uses a
xed rectangular window for all samples in a block while the
latter employs a smooth sliding window.

4. ADAPTIVE BLOCKS
The motivation of the adaptive block technique is that we
would like to use large blocks where modules of coef cients

do not have much variation and otherwise we would prefer
small ones.
We apply the dyadic CART [2, 8] algorithm to adaptively

select the block size. The CARTmethodology of tree-structured
adaptive non-parametric regression is built around ideas of
recursive partitioning and it develops a piecewise constant
reconstruction. Let us denote Rp

k the p-th dyadic partition
at depth k of the whole block R of size Lmax, i.e., R =
R1

k ∪ . . . ∪ R2k−1

k and Rp
k is of size 2−k+1Lmax,∀p. The

bottom-up dyadic CART algorithm that selects adaptively the
block size from {2−k+1Lmax}k=1,...,K is summarized as fol-
lows. The output of the algorithm is {FLAG(i)}i=1,...,Lmax ,
where we nd the partition depth for each sample in R.
Initialization.
Set FLAG(i) = K, ∀ i, 1 ≤ i ≤ Lmax.
For each partitionRp

K , p = 1, . . . , 2K−1, computeCOST (Rp
K).

Main Loop.
For each partition depth k = K − 1,K − 2, . . . , 1
For each partition Rp

k, p = 1, . . . , 2k−1

Compute COST (Rp
k).

If COST (Rp
k) ≤ COST (R2p−1

k+1 ) + COST (R2p
k+1)

Update the ags, i.e., set FLAG(i) = k,
∀ i, (p−1)·2−k+1Lmax+1 ≤ i ≤ p·2−k+1Lmax

else
SetCOST (Rp

k) = COST (R2p−1
k+1 )+COST (R2p

k+1).
end

end
end
The algorithm decides to merge the children partitions into a
parent partition if the cost of the parent is inferior to the sum
of the costs of its children, or otherwise keep them splited.
We de ne the cost COST (R) of a partition R as

COST (R) =
∑
n∈R

(|yB[n]| − AR)2 + λC (5)

where AR =
∑

n∈R |yB[n]| and λC is a weighting parameter
that balances between the amount of variation in the parti-
tion and the split cost that is set equal to 1 for each partition.
The rst term can also be interpreted as the l2 error of ap-
proximating the signal in the partition to a constant. With the
second term, we penalize small blocks if they have the same
variation as their parent. λC should be chosen proportional
to σ2: to see this intuitively, one observes that, without the
presence of the underlying signal f , i.e., y = ε, the rst term
in Eq.(5) is proportional to σ2. The dyadic CART is fast and
it can achieve the global optimization for N samples with a
complexity O(N).
Fig. 2 shows the performance of the dyadic CART with

an example of the adaptive blocks selected by the algorithm:
in the region where the noise dominates, the majority of the
blocks are of the largest size; in those places where the signal
varies a lot, for example at the transitions between the succes-
sive harmonics, the algorithm selects correctly the smallest
blocks.

5. EXPERIMENTS AND RESULTS
The experiments presented below have been performed on
speech signals sampled at 11 kHz and corrupted by white
Gaussian noise. We use the Gabor wavelets with σG = 4
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Fig. 2. a: log scalogram of some clarinet notes. b: adap-
tive blocks selected by the dyadic CART algorithm (gray level
from light to dark: block size from 32 to 2048).

Input SNR (dB)
0 5 10 20

ABA-CW 9.56 11.97 15.15 23.14
HDT-CW 8.78 11.00 13.93 21.86
EMW-CW 9.03 11.45 14.48 22.42
EMW-STF 9.17 11.43 14.37 22.16

Table 1. ABA-CW: Adaptive Block Attenuation with Com-
plex Wavelets. HDT-CW: Hard Thresholding with Complex
Wavelets. EMW-CW/STF: Ephraim and Malah decision-
directed a priori SNR estimator + Wiener with Complex
Wavelets / Short-Time Fourier.

and η = π and we set v = 12 voices per octave and the max-
imum wavelet log scale J = 84, i.e., the wavelets cover the
frequency plane down to 40 Hz. The dyadic CART algorithm
selects adaptively the block among 6 sizes from L′ = 1024 to
L′ = 32, which is equivalent to orthogonal samples fromL ≈
42 to L ≈ 1.3. We set the thresholding level λ = 1+2

√
1/L.

Table 1 presents the performance of different methods.
The block attenuation (1st row) gains about 1 dB SNR in al-
most all cases over the complex wavelet thresholding (2nd
row): the former eliminates the non-uniform liquid noise and
degrades much less the underlying signal. In comparison with
the short-time Fourier basedWiener ltering with the Ephraim
and Malah SNR estimator (4th row), the complex wavelets
based adaptive block attenuation (1st row) not only results
in much less residual noise, but it also preserves better the
transient parts of the signal; the stationary parts of the re-
constructed signal are of similar quality. Let us note that
the Ephraim and Malah SNR estimator using the complex
wavelet representation (3rd row) does not perform as well as
the block attenuation (1st row).1

A number of experiments have been performed on var-
ious music signals as well. The adaptive block attenuation
performs well against the conventional thresholding opera-
tors. It results in sharper note transitions than the estimate
with short-time Fourier. However, the short-time Fourier de-
noising outperforms the wavelet counterpart for the stationary
parts when high pitch is involved (eg. musical signals). This
is because the short-time Fourier has higher frequency reso-
lution than wavelet representation in high frequency bands.

1The audio denoising samples (speech and music) are available online at
http://www.cmap.polytechnique.fr/˜yu/research/audio/samples.html.

6. CONCLUSION AND FUTUREWORK
The block attenuation provides a good approximation of the
attenuation with oracle and its connection to the decision-
directed a priori SNR estimator of Ephraim and Malah is
studied. An adaptive block attenuation based on the dyadic
CART algorithm is introduced. The proposed method elim-
inates the residual noise artifacts and preserves transients of
signals better than short-time Fourier based methods do.
We are currently working on an algorithm based on an

adaptive time-frequency representation that is able to work
on the Gabor wavelet atoms (for transient parts of signals)
or the short-time Fourier atoms (for stationary parts of sig-
nals). Using grouplets [13] may also help to solve the prob-
lem that wavelet representation does not have frequency res-
olution high enough in high frequency bands.
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