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ABSTRACT
We study the computation of the dual frame for oversampled filter
banks (OFBs) by exploiting Greville’s formula, which was derived
in 1960 to compute the pseudo inverse of a matrix when a new row
is appended. In this paper, we first develop the backward Greville
formula to handle the case of row deletion. Based on Greville’s for-
mula, we then study the dual frame computation of the Laplacian
pyramid. Through the backward Greville formula, we investigate
OFBs for robust transmission over erasure channels. The necessary
and sufficient conditions for OFBs robust to one erasure channel are
derived. A post-filtering structure is also presented to implement the
dual frame when the transform coefficients in one subband are com-
pletely lost.

Index Terms— Error resilience, Frames, Greville formula, Lapla-
cian pyramid, Oversampled filter banks.

1. INTRODUCTION

Over the past few years, there have been increased interests in the
study of frame expansions due to their extra design freedom and im-
proved noise immunity (e.g., [1–4] and the references therein). From
a signal-processing point of view, frames in l2(Z) correspond to per-
fect reconstruction (PR) oversampled filter banks (OFBs). Consider
an N -channel OFB with the sampling factor of M , where M < N .
Let the N ×M polynomial matrix E(z) and the M ×N polynomial
matrix R(z) denote the analysis and synthesis polyphase matrices,
respectively. For PR-OFBs, E(z) and R(z) should satisfy

R(z)E(z) = IM . (1)

In other words, R(z) is the left inverse of R(z). Unlike conventional
filter banks, given E(z), there are multiple R(z) which meet (1).
Among them, the most significant one is its para-pseudo inverse, or
the dual frame, which is given by [2]

E†(z) =
“
EH(z)E(z)

”−1

EH(z), (2)

where the superscripts H and † represent respecitvely, the Hermitian
transpose and the dual frame. The dual frame correspond to synthe-
sis filters with the minimum norm. Besides, in the ideal case when
the quantization noise is uncorrelated and white with equal variance,
the dual frame is the optimal solution to minimize the reconstruction
errors [2, 4]. However, its computation in (2) requires the inversion
of the polynomial matrix EH(z)E(z), which could be a costly task.
Although some state-of-the-art software can provide numerical ap-
proximations, they cannot generate closed-form solutions.

Note that in the special case when E(z) is a zero-order matrix,
i.e., when E(z) = E, the dual frame reduces to its pseudo inverse.

An efficient way to calculate the pseudo inverse is through the recur-
sive Greville formula [5], which updates its pseudo inverse when a
matrix is augmented by a row (or column) vector. Based on the Gre-
ville formula, we derive the closed-form solution of the dual frame
for the Laplacian pyramid [6]. We further develop the backward
Greville formula to compute the pseudo inverse when a row (or col-
umn) of a matrix is deleted. This is mainly motivated by the fact that
frames can be used as error-resilient tools to combat erasures. In the
presence of coefficient loss, the signal can still be reconstructed us-
ing the dual frame of the remaining analysis bank [7]. The backward
Greville formula facilitates the analysis of OFBs in the presence of
erasures.

The rest of this paper is organized as follows. In Section 2, we
present the Greville formula and derive the backward Greville for-
mula. Applications of Greville formulas are demonstrated in Section
3 and Section 4, respectively. Specifically, we study the Laplacian
pyramid [6] in Section 3, and examine OFBs for erasure channels in
Section 4. Finally, we draw conclusions in Section 5.

2. FORWARD AND BACKWARD GREVILLE FORMULAS

2.1. The Greville Formula

Suppose that EN (z) is an N × M analysis polyphase matrix of a
PR OFB. Let us partition it into

EN (z) =

»
EN−1(z)
eN (z)

–
(3)

where EN−1(z) is the (N − 1) × M submatrix and eN (z) is its

last row. Assume further that we know E†
N−1(z). The Greville

formula [5] computes E†
N (z) from E†

N−1(z) and eN (z) as follows:
Set

d(z) = eN (z)E†
N−1(z)

and
c(z) = eN (z) − d(z)EN−1(z);

Case 1: If c(z) = 0, set

rN (z) =
d(z)

1 + dN (z)dH(z)
[E†

N−1(z)]H ;

Case 2: If c(z) �= 0, set

rN (z) =
c(z)

c(z)cH(z)
,

then

E†
N (z) =

ˆ
E†

N−1(z) 0
˜
+ rH

N (z)
ˆ−dN (z) 1

˜
(4)
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Remarks: For Case 1, eN (z) is in the range of EN−1(z) and for
case 2, it is not.

2.2. The backward Greville Formula

In this subsection, we aim to derive the reverse problem. That is,
suppose we know E†

N (z), how to calculate E†
N−1(z)? The answer

is presented in Theorem 1.

Theorem 1. (Backward Greville Formula) Suppose that the N ×M
matrix E(z) is as defined in (3). Partition its dual frame E†

N (z) into
the form of

E†
N (z) =

ˆ
RN−1(z) rH

N (z)
˜
, (5)

where RN−1(z) is the M×(N−1) submatrix and rH
N (z) the M×1

column vector. Then, the dual frame of EN−1(z) is given by

E†
N−1(z) = RN−1(z) + rH

N (z)dN (z),

where dN (z) can be expressed as

dN (z) =

8>><
>>:

eN (z)RN−1(z)

1 − eN (z)rH
N (z)

, if eN (z)rH
N (z) < 1 (6)

−rN (z)RN−1(z)

rN (z)rH
N (z)

, if eN (z)rH
N (z) = 1 (7)

Remarks
1. In the backward Greville formula, (6) and (7) correspond to

Case 1 and Case 2 of the forward Greville formula, respectively.

2. In the above Theorem, we only consider the cases when
eN (z)rH

N (z) ≤ 1. Interested readers may ask whether it is possible
to have eN (z)rH

N (z) > 1? The answer is no. Detailed derivations
will be presented in the journal version.

3. The backward Greville formula was also investigated in [8].
But the derivations there are limited to the case when the row vectors
in EN (z) are independent. In other words, our derivations are more
general.

3. DUAL FRAME FOR LAPLACIAN PYRAMIDS

H(z) G(z)M M +
x[n] d[n]

c[n]

Fig. 1. Implementation of the LP frame.

To demonstrate the application of the Greville formula, this sec-
tion considers the computation of the dual frame for the laplacian
pyramid (LP) [6], which has been proved to be a useful tool for im-
age processing and computer vision. Fig. 1 shows its implemen-
tation diagram, where H(z) and G(z) represent, respectively, the
decimation and the interpolation low-pass filters. The output signal
is made up of two components: the coarse signal c[n] represents the
low-frequency components of the original input, while the details
(with band-pass and high-pass frequency components) are contained
in d[n].

As x[n] can be always reconstructed from c[n] and d[n], the LP
realizes a frame expansion [9]. From the FB point of view, the LP

can be implemented through an (M + 1)-channel PR-OFB with the
sampling factor of M , whose polyphase matrix is

Elp(z) =

»
I − gH(z)h(z)

h(z)

–
, (8)

where the M×1 vectors h(z) and g(z) represent the Type-I polyphase
matrices [10] of the low-pass filters of H(z) and G(z), respectively.
Although PR can be achieved for any pair of H(z) and G(z), a typ-
ical choice is to set H(z) and G(z) as biorthogonal filters. Under
this restriction, the corresponding polyphase matrices satisfy

h(z)gH(z) = 1. (9)

In the special case when H(z) is an orthogonal filter and G(z) =
H(z) [9], (9) is reduced to h(z)hH(z) = 1. Accordingly, Elp(z)
is a paraunitary matrix [10] and its dual frame is its Hermitian trans-
pose E†

lp(z) = EH
lp(z)

Our purpose here is to derive a closed-form solution for E†
lp(z)

when (9) holds. First, note that when h(z) and gH(z) satisfy (9),
D(z) = I − gH(z)h(z) is a rank-deficient matrix as one of its
eigen-value is zero [9]. Using the Woodbury formula, we can show
that the para-pseudo inverse of D(z) is [11]

D†(z) = IM − gH(z)g(z)

g(z)gH(z)
− hH(z)h(z)

h(z)hH(z)

+
gH(z)h(z)

h(z)hH(z)g(z)gH(z)
.

(10)

Next, note that Elp(z) satisfies the PR property [9]. Hence, it is of
full rank on the unit circle, i.e., rank(Elp(ejω) = M . As D(z)
is a rank deficient matrix, the row vector h(z) is not in the range of
D(z). Accordingly, we can use Case 2 of the Greville formula to get

E†
lp(z), as presented in the following theorem:

Theorem 2. For the LP frame shown in Fig. 1, let its (M +1)×M
polyphase matrix Elp(z) be given as in (8). Suppose that H(z) and
G(z) are biorthogonal filters with their polyphase matrices satisfy-
ing (9). Then, its dual frame can be expressed as

E†
lp(z) =

h
IM − hH (z)h(z)

h(z)hH (z)
gH(z)

i
(11)

Proof. The derivation of (11) is quite lengthy. To prove that (11)
is indeed the dual frame, we will show that it satisfies the Moorse-
Penrose equations [11]

Elp(z)E†
lp(z)Elp(z) = Elp(z); (12)

E†
lp(z)Elp(z)E†

lp(z) = E†
lp(z); (13)“

Elp(z)E†
lp(z)

”H

= Elp(z)E†
lp(z); (14)“

E†
lp(z)Elp(z)

”H

= E†
lp(z)Elp(z); (15)

First, it is easy to verify that E†
lp(z)Elp(z) = IM when (9) holds.

Hence, Eqs. (12), (13) and (15) are met. Also, through simple math

manipulations, we can get Elp(z)E†
lp(z) =

"
IM − hH (z)h(z)

h(z)hH (z)
0

0 1

#
,

which indicates that Elp(z)E†
lp(z) is a Hermitian matrix. Therefore,

(14) also holds.
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Remarks:
1. Note that in general, E†

lp(z) given by (11) corresponds to an
IIR filterbank. To get an FIR implementation, we can approximate
h(z)hH(z) by a positive constant k 1. That is, at the reconstruction

side, we can replace E†
lp(z) by

R(z) =
h
IM − hH (z)h(z)

k
gH(z)

i
(16)

It is interesting to note that with such approximation, the PR property
in (1) is retained.

2. When H(z) is an orthogonal filter and G(z) = H(z), we
have h(z)hH(z) = 1. Under these constraints, it is easy to show

that (11) boils down to E†
lp(z) =

h
IM − hH(z)h(z)

h(z)hH (z)
hH(z)

i
,

which is exactly EH
lp(z) as expected. In this special case, the syn-

thesis bank is FIR.

4. OFBS FOR ERASURE CHANNELS

Due to the redundancy introduced in frame expansion, OFBs can
be used as joint source-channel codes to provide robustness to era-
sures [7]. In this Section, we examine the resilience of OFBs to one
erasure channel, based on Case 1 of the backward Greville formula.
To this aim, we introduce the following definition:

Definition 1. Let EN (z) denote the N ×M analysis polyphase ma-
trix of a PR-OFB. Denote by E{i}(z) the polyphase matrix obtained
by deleting the i-th row of EN (z). EN (z) is said to be robust to one
erasure if E{i}(e

jω) is of full rank on the unit circle [7].

4.1. OFBs robust to one erasure

This subsection studies the necessary and sufficient conditions for
OFBs to be robust to one erasure channel. Theorem 3 discusses the
case of general PR-OFBs.

Theorem 3. Suppose that EN (z) is the polyphase matrix of an N -
channel PR-OFB with its dual frame given by E†

N (z). Let ei(z)
and rH

i (z) (for i = 1, · · · , N ) denote the i-th row vector of E(z)

and the i-th column vector of E†
N (z), respectively. Then, EN (z) is

robust to one erasure if and only if

ei(e
jω)rH

i (ejω) < 1 (17)

for i = 1, · · · , N and for all ω ∈ [0, 2π).

Proof. Note that when there is only one erasure channel, through
row permutation, we can assume that erasure occurs in the N -th
channel. Let EN (z) be written as in (3), hence E{N}(z) = EN−1(z).
Without loss of generality, the proof is equivalent to showing that
EN−1(e

jω) defined in (3) has full rank if and only if

eN (ejω)rH
N (ejω) < 1. (18)

The “only if” part is obvious as when EN−1(e
jω) is of full rank,

eN (ejω) is in the range of EN−1(e
jω). Hence, by the backward

Greville formula, (18) holds. For the “if” part, according to the back-
ward Greville algorithm, when (18) holds, eN (ejω) is in the range
of EN−1(e

jω). Hence, there exists a vector d(ejω) so that

eN (ejω) = d(ejω)EN−1(e
jω).

1k can be determined by calculate the average value of |h(ejω)|2 for
ω ∈ [0, 2π)

and accordingly, we can re-write EN (ejω) into

EN (ejω) =

»
IM

d(ejω)

–
EN−1(e

jω)

Recall that for any two matrices X and Y, the inequality rank(Y) ≥
rank(XY) holds. Hence, we have

rank(EN−1(e
jω)) ≥ rank(EN (ejω)) = M,

where we have used the fact that EN (z) satisfies the PR property.
Also, the size of EN−1(e

jω) is (N − 1) × M , which indicates that

rank(EN−1(e
jω)) ≤ M.

Combining the above two inequalities, we know that EN−1(e
jω) is

of full rank on the unit circle.

Example 1. For the LP frame depicted in Fig. 1, we have shown
in the proof of Theorem 2 that if (9) is satisfied, Elp(z)E†

lp(z) ="
IM − hH (z)h(z)

h(z)hH(z)
0

0 1

#
. This indicates that eN (z)rH

N (z) = 1. By

Theorem 3, the LP frame is not robust to one erasure channel by
using biorthogonal filters.

For the special case when EN (z) implements a tight frame, i.e.,
when EH

N (z)EN (z) = AIM with A > 0, its dual frame can be sim-

ply written into E†
N (z) = 1

A
EH(z). A consequence of Theorem 3

is as follows:

Corollary 1. If EN (z) corresponds to a tight frame, i.e., when it
satisfies EH

N (z)EN (z) = AIM with A > 0, it is robust to one
erasure channel if and only if its i-th row vector ei(z) satisfies

ei(e
jω)eH

i (ejω) < A (19)

for all i = 1, · · · , N and for all ω ∈ [0, 2π).

Remarks:
Note that [7] also investigated the case where there is only one

erasure. But the discussions there are focused on the uniform tight
frame (UTF), a special class of tight frames with equal norm for each
analysis filter. Our derivations are for general frames implemented
via PR and PU OFBs. It can be shown that when A = N/M , Corol-
lary 1 boils down to Theorem 5 in [7]. Although theoretically, UTFs
provide optimal performance, their design is very difficult. On the
other hand, several works have reported simple design methods and
fast implementations for cosine modulated OFBs [12] and linear-
phase OFBs, which are attractive in practical applications like oth-
orgonal frequency-division multiplexing (OFDM) and image cod-
ing. The theory developed here can be used for those FBs which do
not generate UTFs.

4.2. Implementation structure

Suppose that EN (z) is robust to one erasure channel. In this section,
we consider the following problem: when the erasure occurs in one
channel, how to implement the dual frame of the remaining analysis
bank? Again, without loss of generality, let us assume that the sub-
band coefficients in the N -th channel are completely lost. As (18)
holds, by using the backward Greville algorithm, we have

E†
N−1(z) = RN−1(z) +

rH
N (z)eN (z)

1 − eN (z)rH
N (z)

RN−1(z), (20)
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where all the notations here follow those of Section 2.2. By (5),

RN−1(z) can be expressed as RN−1(z) = E†
N (z)

»
IN−1

0

–
. Sub-

stituting it into (20), we arrive at the following expression of E†
N−1(z)

E†
N−1(z) =

„
IM +

rH
N (z)eN (z)

1 − eN (z)rH
N (z)

«
E†

N (z)

»
IN−1

0

–
. (21)

Example 2. To have a quick check of (21), let us consider the 3× 2
Mercedes-Benz (MB) frame [7] with the analysis polyphase matrix

E3(z) = E3 =

2
4 0 1

−
√

3
2

− 1
2√

3
2

− 1
2

3
5. As E3 is a uniform tight frame

in R
2 [7], it is robust to one erasure channel with the dual frame

given by E†
3(z) = 2

3
ET

3 . Suppose that the erasure occurs in the last
channel and we aim to reconstruct the signal using the dual frame of

E2(z) =

»
0 1

−
√

3
2

− 1
2

–
. By definitions of (3) and (5), we know that

e3(z) =
h√

3
2

− 1
2

i
and rH

3 (z) = 2
3
eH
3 (z). Substituting E†

3(z),

e3(z) and rH
3 (z) into (21) yields E†

2(z) =

»
−

√
3

3
− 2

√
3

3
1 0

–
, which

is exactly the inverse of E†
2(z).

Fig. 2 shows the corresponding implementation structure of (21).
The process can be described as follows. First, in the frequency do-
main, all the subband coefficients in the erasure channel (i.e., the
N -th channel in the diagram) are set to zeros. Then, the original
dual frame E†

N (z) is applied, followed by a time-domain post-filter

P(z) = IM +
rH

N (z)eN (z)

1−eN (z)rH
N

(z)
to yield the reconstructed signal. In

particular, the filter
rH

N (z)eN (z)

1−eN (z)rH
N

(z)
is used to compensate for the era-

sure in the N -th channel.
From the above description, one can see that our proposed struc-

ture in Fig. 2 is based on time-domain post-processing through P(z).

An alternative way to implement E†
N−1(z) is through the method

proposed in [13], where the lost subband coefficients are first pre-
dicted in the frequency domain before being reconstructed by E†

N (z).
In other words, the structure in [13] is based on frequency domain
pre-filtering. It can be easily shown that the implementation com-
plexities of these two structures are about the same. One attractive
property of our proposed structure is that it can be combined with
time-domain over-sampled lapped transform [14], which adds time-
domain oversampled pre-/post-filters outside the DCT and the IDCT.
In this way, exiting DCT-based standards (like the JPEG) can be in-
tact. One of our on-going works is to investigate the theoretical re-
sult presented here for robust transmission of images/videos that are
compressed by the DCT-based codecs.

5. CONCLUSIONS

In this paper, we have studied the computation of the dual frame
via Greville’s formulas. We derived the backward Greville formula,
which iteratively computes the pseudo inverse of a matrix when a
row is deleted. The applications of the formulas were then demon-
strated. In particular, the Greville formula leads to a closed-form
solution of the dual frame for Laplacian pyramids. Based on the
backward Greville formula, we derived the necessary and sufficient
conditions for PR-OFBs robust to one erasure channel. We also pro-
posed a post-filtering structure to implement the dual frame in the
presence one erasure channel. Detailed proofs of all the theorems

1

+
N-1

EN(z)
+

0

M

1

rN (z)
HeN (z)

1- eN(z)rN(z)
1

H

M

1

M

M

EN-1(z)
+

Fig. 2. Post-filtering based implementation structure for E†
N−1(z)

along with more examples and their practical applications will be
reported in the journal version.
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