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ABSTRACT

This paper studies the robustness of filter bank (FB) frame in l2(Z) to
quantization and erasures from the perspective of both frame and FB
theory. It is shown that the equal-norm property, imposed frequently
in previous papers, is not necessary for optimization of frames under
certain conditions and not desirable from the viewpoint of designing
FB frames. We introduce a novel notion, named frame energy, which
actually dictates the quantization performance of FB frames. Then,
the erasure effects on the structures and quantization performance
of FB frames are investigated. The design freedom obtained from
removing the equal-norm property is explained and illustrated with
examples.

Index Terms— Digital filters, Error recovery, Quantization, Re-
dundancy, Signal representations

1. INTRODUCTION

Digital FB actually implements a class of discrete-time signal expan-
sions, which finds many applications in signal processing and com-
munications [1]. The relation between critically sampled FBs and
signal expansions has been extensively studied in [1, 2]. Recently, at-
tention has been drawn to oversampled FBs (OFB) and correspond-
ing redundant signal expansions. It was studied in [3, 4] that OFBs
correspond to a class of frames, named FB frames, which extend fi-
nite frames in space CM to more general space l2(Z). OFBs have
been of great interest recently because they can offer some desired
advantages over traditional critically sampled FBs, such as structural
redundancy left in subband signals for error resilient transmission.
Thus, they are appropriate for multiple description coding and de-
sign of space-time coding for multiple antenna wireless systems.

The motivation for our research on FB frames is due to their
structural redundancy which can enhance resilience to erasures for
information transmission over erasure networks like Internet. Con-
sidering a P -channel OFBwith subsampling factorM (M < P ), af-
ter the analysis FB which transforms the input signal into subbands,
the P subband signals are scalar quantized separately by uniform
scalar quantizers and sent over P independent channels. Each chan-
nel is lossless or totally lost during transmission. The decoder re-
ceives P −e channel information, where e is the number of erasures,
and tries to reconstruct the source by a linear method, i.e., synthesis
FB. In this paper, we do not assume any prior information on the in-
put signal, and only use the popular uncorrelated quantization noise
model and assume equal probability of erasures. Thus, the recon-
struction performance only depends on the characteristics of the FB.
We investigate the FB properties induced by being optimally robust
to quantization and erasures.

Previous work on frame expansion with quantization and era-
sures has been focused on finite frames in space CM or RM [5, 6].
Recently, it has been extended to FB frame in l2(Z) [7]. However,

an unnecessary condition of equal-norm for FB frames is always im-
posed in [5]-[7] which leads to the restriction of the optimality of
tight frames over equal-norm FB frames. In this paper, we show that
the equal-norm property is not always necessary and tight FB frames
are optimal over more general FB frames. In addition, the equal-
norm property is not desirable in the perspective of designing FB
frames. Even for finite frames, it is difficult to design an equal-norm
tight frame, i.e., a tall rectangular orthogonal matrix with orthogonal
columns and equal-norm of rows, with some freedom for given de-
sign specifications P and M . Furthermore, it is shown that it is the
frame energy, not the equal-norm property, that dictates the quanti-
zation performance of FB frames under uncorrelated noise model.

Notations: Bold-faced quantities denote matrices and vectors.
IM denotes the identity matrix with size M . Any P -channel OFB
with subsampling factorM is denoted by itsP×M analysis polyphase
matrix E(z). For arbitrary P ×M constant matrix A and polyno-
mial matrixA(z), we say A and A(z) are orthogonal and parauni-

tary (PU), respectively, if the M × P matrix A
T and Ã(z) satisfy

A
T
A = cIM and Ã(z)A(z) = cIM for some positive constant

c, where Ã(z) = A
∗(1/z∗). The superscript ∗ denotes the Her-

mitian transpose; when used with scalars, it denotes only complex
conjugation.

2. PRELIMINARIES

2.1. Fundamentals of Frames

In this paper, we mainly study the frames in the Hilbert space l2(Z)
implemented by a FB and specialize them to finite dimensional space
H
M (H = C or R). A set of sequences (or vectors) Φ = {φk}k∈I

with index set I in a Hilbert space H (with finite or infinite dimen-
sion) of square summable sequences is a frame if for any x ∈ H,

0 < A‖x‖2 ≤
∑
k∈I

|〈φk, x〉|
2 ≤ B‖x‖2 < +∞ (1)

where the constants A, B are called frame bounds. For finite frames
in spaceHM , the cardinality of the index set I is finite. In this paper,
a finite frame is defined as a collection of P vectors with length M
satisfying (1), which can be equivalently represented by a P × M
matrix F with the P vectors as the rows.

However, for the frame in l2(Z) implemented by an OFB with
P channels and subsampling factor M , the elements constituting a
frame correspond to the translated version of P elementary wave-
forms Φ = {φij |φij [n] = φi[n − jM ], 0 ≤ i ≤ P − 1, j ∈ Z},
where the elementary waveforms are related to the filter impulse re-
sponses as φi[n] = h∗i [−n], 0 ≤ i ≤ P − 1. The finite frame can
be seen as a special case of FB frame if we constrain the filter length
to be the subsampling factor M , i.e., the polyphase matrix E(z) de-
generating into constant matrix F. Thus, all results for FB frame in

III ­ 8531­4244­0728­1/07/$20.00 ©2007 IEEE ICASSP 2007



l2(Z) is also applicable to finite frames in HM . The frame condi-
tion (1) on a FB can also be expressed in terms of the properties of
the polyphase matrix E(z), which establishes a bridge between the
frame and FB theory [3, 4].

Proposition 1. [3, 4] A FB implements a frame expansion if and
only if its analysis polyphase matrix E(z) is of full rank on the unit
circle. Moreover, a FB implements a tight frame expansion if and
only if it is paraunitary, i.e., Ẽ(z)E(z) = AIM .

A very important concept of FB frames is the frame operator
S(z) which is an M ×M matrix S(z) = Ẽ(z)E(z). The eigenval-
ues λi(ω) of the frame operator indexed by frequency ω are called
spectral eigenvalues. Another operator of FB frame is the Gram ma-
trix which is a P × P matrix and defined as G(z) = E(z)Ẽ(z).
Both the above two matrices are Hermitian and positive semidefinite.
In addition, they have the same nonzero spectral eigenvalues. For
a given FB frame with polyphase matrix E(z), its pseudo-inverse

Ê(z) is defined as Ê(z) = [Ẽ(z)E(z)]−1Ẽ(z). The existence of
inversion is guaranteed due to the full rank property of E(z).

2.2. Classification and Eigenstructures of Frames

To prevent confusion of various terms used in the literature, the stan-
dard notations established by [6] are adopted and expanded in this
paper.

• λ-tight frame (λ-TF): Tight frame with frame bound λ.

• Equal-norm frame (ENF): Frame where all the elements have
the same norm, ‖φm‖ = ‖φn‖ for all m, n.

• Unit-norm frame (UNF): Frame where all the elements have
norm 1, ‖φm‖ = 1 for all m.

• Uniform frame (UF): FB Framewhere the norm of the polyphase
vector of each filter is independent of frequency, i.e.,Pi(ω) =∑M
j=1

|Eij(ω)|2 = ‖hi[n]‖2 [7].

In the following sections, we will see that the eigenstructure of
the frame operator S(ω) plays an important role in analysis of FB
frame. There is a fundamental equality on the integral sum of the
spectral eigenvalues,

∫ π
−π

M∑
i=1

λi(ω)
dω

2π
=

∫ π
−π

P∑
i=1

Pi(ω)
dω

2π
=

P∑
i=1

‖hi[n]‖2 (2)

For tight FB frames, i.e., paraunitary FBs, spectral eigenvalues are
all equal to frame bound A and constant over the unit circle. Thus
MA =

∑P
i=1
‖hi[n]‖2. In addition, tight FB frames have a very

nice property that the pseudo-inverse of E(z) can be easily obtained

by Ê(z) = A−1
Ẽ(z).

3. QUANTIZED FILTER BANK FRAME

In this section, we investigate the sensitivity of FB frame expansion
to quantization noise added to the subband signals in absence of era-
sures. The reconstruction method from subbands is constrained to be
linear, which is equivalent to using a synthesis FB. For mathematical
tractability, we assume the quantization noise vector to be white and
pairwise uncorrelated with identical variances σ2

q . It is well known

that the optimal PR synthesis FB is the pseudo-inverse Ê(z) and the
minimum mean square error (MSE) is [8],

σ2

e =
σ2

q

M

∫ π
−π

tr[Ê(ω)Ê∗(ω)]d
ω

2π
=

σ2

q

M

∫ π
−π

M∑
i=1

1

λi(ω)
d

ω

2π

(3)

The above result reveals the optimal synthesis bank given a FB
frame. In the rest of this paper, we will assume using the pseudo-
inverse for reconstruction when quantization is involved. Here, we
want to further investigate the optimal FB frame under the same
quantization model and find what properties of FB frame are induced
by such optimality. Although we don’t impose any constraint on the
underlying frames, there is a constraint as in (2) on the integral sum
of the spectral eigenvalues λi(ω) of FB frames. This leads natu-
rally to defining an important quantity of FB frames, namely frame
energy.

Definition 1. The frame energy T of a FB frame is defined as T =∑P
i=1
‖hi[n]‖2. For finite frame, it is just the sum of square of norms

of the frame vectors.

Without loss of generality, we can always scale matrix E(ω) to
let all frame elements with norm ‖φi‖ ≤ 1. Thus, the frame energy
has an upper bound P . Now, our optimization problem becomes
trying to minimize σ2

e given the constraint of upper bounded frame
energy. This optimal FB frame in the sense of MSE, is the tight
frame as stated in the following theorem.

Theorem 1. When encoding with a FB frame in l2(Z) with frame
energy T upper bounded by C, i.e., T ≤ C(0 < C ≤ P ), and
decoding with the pseudo-inverse under the additive white and pair-
wise uncorrelated noise model, the reconstruction MSE is minimum
if and only if the FB frame is tight and the minimum MSE is M

C
σ2

q .
Furthermore, the optimal frame is generally not unique although the
ENTF is always an optimal one.

Proof. From the equality (2), we see easily that the optimal frame
occurs when frame energy T attains its upper bound C. In addi-
tion, from the form of MSE in (3) and the Euler-Lagrange condition
of the calculus of variations [9], we know that the minimization of
MSE can be treated as a succession of ordinary minimization prob-
lems indexed by ω between 0 and 2π. Then we can see that the MSE
is minimum when spectral eigenvalues λi(ω) are identical and con-
stant over the unit circle, which is true if and only if the FB frame
is tight. Thus, the sum of eigenvalues

∑M
i=1

λi = Mλ = C, i.e.,
λi(ω) = C/M . The minimum MSE then follows from (3).

This theorem reveals the optimality of tight FB frames to quan-
tization. Note that this result is also applicable to finite frames.
Compared to the previous results in [5] and [7] for finite and FB
frames, respectively, which only stated the optimality of TFs among
UNFs, our result is more general since it states the optimality of
tight frames over all frames and it can cover theirs as a special case
of ours. Moreover, theorem 1 reveals that it is the frame energy, not
the unit-norm property, that dictates the optimal quantization perfor-
mance of FB frames. In addition, the equal-norm condition is not
desirable from the perspective of designing tight frames since it is
very difficult, if not impossible, to impose both the column-wise or-
thogonality condition (tight) and row-wise constant norm condition
(equal-norm) simultaneously on frame F, while still leaving some
degree of design freedom. So far, the well known Harmonic frames
are the only known equal-norm, tight finite frames [6, 10]. However,
they are fixed when design specifications P andM are given. On the
contrary, we can obtain some degree of design freedom by remov-
ing equal-norm condition without destroying optimality onMSE.We
give two examples of optimal tight frames with the same minimum
MSE to validate the nonuniqueness of the optimal frames with re-
spect to quantization. For the purpose of simplicity, we use finite
frames with frame energy T ≤ P for illustration.
Example 1: Optimal tight frame is an ENTF.
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For such frame, the frame vector norm ‖φi‖ = T/P for i = 1, · · · , P .
The eigenvalues of frame operator λi = T/M for i = 1, · · · , P .
The minimum MSE is M

T
σ2

q . The existence of ENTF is shown by
explicit construction in [6]. When T = P , it is just the UNTF stud-
ied in [5, 7].
Example 2: Optimal tight frame is an unequal norm TF.
We show this by an explicit construction. Starting with any P × P
orthogonal matrix A (for example P × P DCT matrix), we scale
A with factor

√
T/M and then delete any P −M columns, which

results in a matrix F. It can be shown easily that FTF = T
M

IM ,
i.e., F represents a TF with frame bound T/M . Its eigenvalues are
same as those of Example 1, thus the same MSE performance. How-
ever, the norms of frame vectors usually may not be equal to T/P
although their sum are still equal to frame energy T . However, in the
extreme case of T = P , the optimal frame must be an UNTF.

4. ROBUSTNESS OF FB FRAME TO ERASURES

In this section, we study the robustness of FB frame to erasures,
which is a typical phenomenon in information transmission over
packet based networks like Internet. Assuming a FB frame with
P ×M polyphase matrix E(ω) and an index set of erasures E, we
denote the polyphase matrix after e erasures by EE(ω), where e is
the cardinality of the set E, i.e., e = |E|. The matrix EE(ω) is a
(P − e) × M matrix obtained by deleting the rows indexed by E
from the original E(ω). When EE(ω) is still of full rank on the unit
circle, it is called a subframe. However, the subframeEE(ω) is usu-
ally dependent on the erasure set E, which means that a subframe
may not exist for some erasure set. From the viewpoint of robust
transmission over erasure network, it is desirable that the subframe
after e erasures is independent of specific erasure set E. A FB frame
is said to be robust to e erasures if a subframe exists for any erasure
set E with e = |E|.

4.1. Erasure Effect on Tight Filter Bank Frames

TF has found many applications in signal processing and commu-
nications since they have many desirable properties. Here, we first
derive an important property of tight FB frames unnoticed before.

Lemma 1. The square of the norms of the polyphase vectors of any
tight FB frame is upper bounded by its frame bound A, i.e., Pi(ω) ≤
A on the unit circle for all i = 1, 2, · · · , P .

Proof. It can be seen easily that Pi(ω) is just the diagonal element
of the Gram matrix of FB frame, i.e., Pi(ω) = e

T
i G(ω)ei where

G(ω) = E(ω)E∗(ω) and ei is the standard basis in R
P . Since

G(ω) is a Hermitian matrix, it can be diagonalized by a unitary ma-
trix. However,G(ω) has the same nonzero eigenvalues as frame op-
erator S(ω) = E

∗(ω)E(ω) = AIM . Thus, we know thatG(ω) has
M positive eigenvaluesA and P−M zero eigenvalues, which means
there exists a unitary matrixU(ω) such thatG(ω) = U(ω)ΣU

∗(ω),
whereΣ = diag(AIM , 0P−M ). This leads toPi(ω) = u

T
i (ω)Σui(ω),

where ui(ω) = U
∗(ω)ei and ‖ui(ω)‖ = ‖ei‖ = 1 due to unitarity

of U(ω). Thus, Pi(ω) = A
∑M
j=1

‖uij(ω)‖2 ≤ A‖ui(ω)‖2 = A
for all ω and i = 1, · · · , P .

This lemma reveals a novel perspective on the frame bound of
tight FB frames, which is an upper bound on the square of norm of
the polyphase vector of each filter. For finite frames, it simplifies to
the upper bound of square of norm of frame vectors, which is called
the fundamental inequality of finite tight frames [11]. Since the tight
FB frame is optimal in the sense of MSE as shown by Theorem 1, we

attempt to find that under what condition, it is also robust to erasures.
The following theorem gives the existence condition and reveals that
the equal-norm condition is not necessary for robustness to one era-
sure, which is established in [7].

Theorem 2. A TF implemented by a FIR OFB is robust to one era-
sure if and only if the square of the norm of the polyphase vector of
each filter is strictly less than the frame bound A, i.e., Pi(ω) < A
for all ω and i = 1, 2, · · · , P . Furthermore, the subframe after one
erasure generally cannot be a TF again.

Proof. Assume that the erased channel is Hi(ω) whose polyphase
vector is denoted by a row vector hi(ω). After one erasure, call the
remaining (P−1)×P polyphase matrixEi(ω), thenE∗i (ω)Ei(ω) =
E
∗(ω)E(ω)− h

∗

i (ω)hi(ω) = AIM − h
∗

i (ω)hi(ω). The subframe
Ei(ω) exists if and only if Ei(ω) is of full rank on the unit cir-
cle, which is equivalent to a nonzero determinant of E∗i (ω)Ei(ω).
By the equality of determinant det(I + AB) = det(I + BA), we
can see det[E∗i (ω)Ei(ω)] = AMdet[IM − A−1

h
∗

i (ω)hi(ω)] =
AM [1 − A−1

hi(ω)h∗i (ω)] = AM [1 − A−1Pi(ω)]. Thus, The
subframe Ei(ω) exists if and only if 1 − A−1Pi(ω) 	= 0, i.e.,
Pi(ω) 	= A for all ω. Since the underlying FB is FIR and the
fact that the frequency response of an FIR filter is continuous, the
inequality Pi(ω) 	= A implies Pi(ω) > A or Pi(ω) < A for
all ω. However, Lemma 1 has already excluded the possibility of
Pi(ω) > A. For a FB frame to be robust to one erasure, it must
be robust to any possible channel erasure, thus Pi(ω) < A for all ω
and i = 1, 2, · · · , P . The subframe withEi(ω) is a TF if and only if
E
∗

i (ω)Ei(ω) = cIM with nonzero constant c. This would demands
that h∗i (ω)hi(ω) be zero since it is rank one matrix. This means the
filter hi[n] is zero.

Apparently, if the number of erasures e > P −M , the subframe
cannot exist. Thus, a FB frame with polyphase matrixE(ω) is called
maximally robust (MR) to erasures, i.e., e = P−M , if everyM×M
submatrix of E(ω) is invertible. Finite MR frames have been found
and studied in [5, 6, 12, 13]. However, they have no design freedom
when the design specifications of P and M are fixed, i.e., the finite
MR frame is fixed. In the following lemma, we give a parameterized
structure which has the MR property, but still has some degree of
design freedom.

Lemma 2. For any given P × P nonsingular Vandermonde matrix
V, we can obtain a maximally robust frame F represented by a P ×
M matrix after deleting the right P −M columns of V.

Since everyM×M submatrix ofF is still a nonsingular Vander-
monde matrix (due to the nonsingular matrix V), F is a maximally
robust frame. The lowpass DFT codes [12] and complex harmonic
frames [5, 6] are special cases of this type of MR frames. In addi-
tion, we can construct MR FB frames by backward factorization of
the polyphase matrix E(ω).

Theorem 3. A MR FB frame can be constructed by the pre-filtering
structure, i.e., the analysis polyphase matrixE(ω) = FU(ω), where
F is any MR finite frame in HM and U(ω) is an M ×M polyphase
matrix nonsingular over the unit circle.

It can be shown easily that every M ×M submatrix of E(ω) is
nonsingular over the unit circle since the erasures only affect F. The
detail is omitted due to the space limitation.
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4.2. Erasure Effect on the Performance of Quantization

In the previous section, it is shown that is is possible to design FB
frames which are robust to e (0 < e ≤ P−M) erasures. We assume
such FB frames for the rest of this paper. We want to examine the
effect of erasures on the MSE and try to find the optimal frame and
its properties induced by this optimality in the sense of MSE.

Theorem 4. When encoding with a uniform frame implemented by
an FIR OFB with given frame energy T ≤ C (0 < C ≤ P ), and
decoding with the pseudo-inverse of the subframe under the addi-
tive white, pairwise uncorrelated noise model, the MSE averaged
over all possible one channel erasures (assume equal probability of
channel failure) is minimum if and only if the original frame is tight
and equal-norm. The average MSE is MSE1 = (1 + 1

P−M
)MSE0,

where MSE0 = M
C

σ2

q .

Proof. Assume the same setup as that in the proof of Theorem 2.

MSE1 =
1

P

P∑
i=1

σ2

q

M

1

2π

∫ π
−π

tr{[E∗i (ω)Ei(ω)]−1}dω (4)

Bymatrix inversion lemma (A−BCD)−1 = A
−1+A

−1
B(C−1−

DA
−1

B)−1DA
−1, we can obtain [E∗i (ω)Ei(ω)]−1 = S

−1(ω) +
S
−1(ω)h∗i (ω)[1−hi(ω)S−1(ω)h∗i (ω)]−1hi(ω)S−1(ω), where S(ω)

is the frame operator with frame bounds A and B, i.e., AIM ≤
S(ω) ≤ BIM . Thus, we obtain tr[E

∗

i (ω)Ei(ω)]−1 = tr[S−1(ω)]+
[1 − hi(ω)S−1(ω)h∗i (ω)]−1tr[S−1(ω)h∗i (ω)hi(ω)S−1(ω)] since
scalars can be extracted out of trace operation. By the equality
tr(AB) = tr(BA), the term tr[S−1(ω)h∗i (ω)hi(ω)S−1(ω)] can be
simplified to tr[hi(ω)S−2(ω)h∗i (ω)] which is a scalar. The average
MSE becomes

MSE1 =
σ2

q

M

1

2π

∫ π
−π

tr[S−1(ω)]dω + (5)

1

P

P∑
i=1

σ2

q

M

1

2π

∫ π
−π

hi(ω)S−2(ω)h∗i (ω)

1− hi(ω)S−1(ω)h∗i (ω)
dω

The first term is minimized if and only if the frame is tight as seen
from Theorem 1. Nowwe try to minimize the second term and inves-
tigate its lower bound. Since the FB frame is uniform, Pi(ω) = Ci
independent of ω where Ci is a constant. By a similar derivation
as that in Lemma 1, we can show Pi(ω) = Ci ≤ B. From the
positive definiteness of S(ω), we know that B−1

IM ≤ S
−1(ω) ≤

A−1
IM which leads to the inequality 1 − hi(ω)S−1(ω)h∗i (ω) ≤

1 − B−1
hi(ω)h∗i (ω) = 1 − B−1Pi(ω) = 1 − Ci

B
. Similarly, we

get hi(ω)S−2(ω)h∗i (ω) ≥ Ci

B2
. Thus the critical part of the second

term in (5) has a lower bound,

P∑
i=1

1

2π

∫ π
−π

hi(ω)S−2(ω)h∗i (ω)

1− hi(ω)S−1(ω)h∗i (ω)
dω ≥

P∑
i=1

B−2Ci
1−B−1Ci

Equality can be achieved if and only if the frame is tight, i.e., S(ω) =
AIM = BIM . Let positive zi = Ci/B ≤ 1, then the lower bound

becomes B−1
∑P
i=1

zi
1−zi

. Then, we have to minimize the central

part of the lower bound J =
∑P
i=1

zi
1−zi

subject to the constraint

on frame energy
∑P
i=1

zi = B−1
∑P
i=1

Ci = T/B. Since J is
a convex function over zi, we can show that J attains minimum if
and only if all zi are equal to T/PB, i.e., Ci = T/P for all i.
This demands the equal-norm property of the original frame E(ω).
When the FB frame is tight and equal-norm, the spectral eigenvalues
λi(ω) = A = T/M for all ω and i = 1, · · · , P . The average MSE
follows from (4).

Compared to previous result in [7], this theorem reveals the equal-
norm property is necessary for optimality of MSE of FB frames.

5. CONCLUSION

This paper studies FB frames in l2(Z) from the perspective of both
frame and FB theory. By this method, we can conduct theoretical
analysis as well as consider real design. In particular, it is shown
that the equal-norm property, imposed frequently in previous papers,
is not necessary for optimization of frames under certain conditions.
Moreover, this property is not desirable from the viewpoint of de-
signing FB frames. In this paper, we introduce a novel and important
notion, named frame energy, which actually dictates the quantization
performance of FB frames. It is shown that tight frames are optimal
for quantization with a constraint on frame energy. In case of era-
sures, a necessary and sufficient condition is given for FB frames
robust to one erasure without the need of equal-norm property. Then
we examine the effect of one erasure on theMSE for such FB frames.
The design freedom obtained from removing the equal-norm prop-
erty is explained and illustrated with examples.
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