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ABSTRACT

We consider universal piecewise linear regression of real val-
ued bounded sequences under the squared loss function. In
this setting, we present a lower bound on the regret of a uni-
versal sequential piecewise linear regressor compared to the
best piecewise linear regressor that has access to the entire
sequence in advance. This lower bound is tight in that it
achieves the corresponding upper bound, suggesting a min-
max optimality of the sequential regressor, for every individ-
ual bounded sequence.

Index Terms— Regression, piecewise linear approxima-
tion, prediction methods, universal, minimax methods

1. INTRODUCTION

Consider the problem of piecewise linear p-th order regres-
sion of an arbitrary real-valued sequence. Both the outcome
sequence xn and the observation sequence yn are assumed
to be deterministic individual sequences which are bounded
such that |x[t]| < Ax and |y[t]| < Ay for all t. At each time
instant t, after forming an estimate x̂[t] based on observations
y[t] = [y[t], y[t − 1], . . . , y[t − p + 1]]T, one observes the
t-th sample x[t] of the sequence xn. The accumulated loss
of the regressor x̂[t] with respect to the sequence xt up to
time t is given by l(xt, x̂t) =

∑t
k=1(x[k] − x̂[k])2. This

regressor is strongly sequential in the sense that at time t,
it has only access to the observations y[1], y[2], . . . , y[t] up
to time t and the past values of the outcome sequence, i.e.,
x[1], x[2], . . . , x[t − 1]. The goal of the sequential regressor
is to perform almost as well as the best batch regressor know-
ing the entire sequence xn in advance.

Sequential regression and prediction algorithms as well
as upper and lower bounds on the regret of those algorithms
are, e.g., described in the machine learning literature [1, 2, 3],
the signal processing literature [4, 5, 6] and the information
theory literature [7].

2. PIECEWISE LINEAR REGRESSION AND UPPER
BOUND ON THE REGRET

Restriction to linear regression algorithms considerably limits
the modeling power of the regressor. To generalize the class
of regressors, we focus on piecewise linear regression, where
we parse the past observation space [−Ay, Ay]p spanned by
the observations into J xed known regions Rj such that⋃J

j=1Rj = [−Ay, Ay]p. Then, using a piecewise linear re-
gression x̃[t] from a sequential algorithm, we try to minimize

sup
xn,yn

{
n∑

t=1

(x[t]− x̃[t])2 − min
w∈RJp

n∑
t=1

(x[t] − wT
s[t]y[t])

2

}
,

(1)

where the state indicator variable s[t] = j if y[t] = [y[t], y[t−
1], . . . , y[t−p+1]]T ∈ Rj . The vector w=[wT

1 , w
T
2 , . . . , w

T
J ]

T

collects the J linear regression vectors wj ∈ Rp.
In [6], a sequential piecewise linear regressor x̃[t] is pre-

sented whose regret with respect to the best piecewise linear
batch regressor of order p satis es

1
n

n∑
t=1

(x[t] − x̃[t])2≤ 1
n
min

w

{
n∑

t=1

(x[t]−wT
s[t]y[t])

2+δ‖w‖22
}

+
pJA2

x

n
ln
(n

J

)
+O

(
1
n

)
, (2)

for any xn ∈ [−Ax, Ax]n, yn ∈ [−Ay, Ay]n and δ > 0.
De ning J time vectors of length nj , t

nj

j = {t : s[t] = j},
and sequences x

nj

j = {x[tj [k]]}nj

k=1 and y
nj

j = {y[tj [k]]}nj

k=1,
the regressor x̃[t] achieving this bound is given by [6]

x̃[t] = w̃T
s[t][t− 1]y[t], (3)

with

w̃j [t− 1] =

(
t∑

k=1

y
j
[k]yT

j
[k] + δjIp

)−1 t−1∑
k=1

y
j
[k]xj [k],

(4)
where δj > 0 is a positive constant and Ip the p × p iden-
tity matrix. Equation (2) states that there exists a sequential
regressor given in Eq. (3) that can predict x[t] as well as the
best piecewise linear regressor with J regions whose p-th or-
der regression vectors wj , j = 1, 2, . . . , J , could have been
selected based on observing the entire sequence xn.
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3. LOWER BOUND ON THE REGRET FOR SCALAR
REGRESSION

In the following, we rst focus on piecewise scalar regressors,
i.e., p = 1, and derive a lower bound for

inf
q∈Q

sup
xn,yn

{
n∑

t=1

(x[t]− x̃q[t])2 − inf
w

n∑
t=1

(x[t]− ws[t]y[t])2
}

,

(5)
where Q is the class of all sequential regressors. This lower
bound coincides with the upper bound given in Eq. (2), sug-
gesting that the regressor described in Eq. (3) is optimal in a
sense that no sequential regressor can do much better, i.e., in
a min-max sense. This is stated in the following theorem.

Theorem 1: Let xn and yn be individual bounded sequences
with |x[t]| < Ax and |y[t]| < Ay , and let x̃q[t] form the out-
put of a sequential regression algorithm. Then

inf
q∈Q

sup
xn,yn

1
n

{
n∑

t=1

(x[t]− x̃q[t])2− inf
w

n∑
t=1

(x[t]− ws[t]y[t])2
}

≥ JA2
x(1− ε)

n
ln
(n

J

)
− G

n
− O

(
1
n2

)
, (6)

whereQ is the class of all sequential regressors, for all ε > 0
and a positive constant G > 0.

Hence, for every sequential regressor there exists a pair of
sequences xn and yn such that the normalized accumulated
regression error is at least O(n−1 ln(n)) worse than that of
the best batch regressor. This means that the regressor of Eq.
(3) cannot be improved upon, in a min-max sense. The proof
of the theorem is based on results in [3] for linear regression.

3.1. Proof of the Theorem

De ning xw[t] = ws[t]y[t], we have for any distribution on
xn and yn that

inf
q∈Q

sup
xn,yn

{
l(xn, x̃n

q )− inf
w

l(xn, xn
w)
}
≥ L(n), (7)

where

L(n) � inf
q∈Q

E
[
l(xn, x̃n

q )
]− E

[
inf
w

l(xn, xn
w)
]

. (8)

Hence, it is enough to lower boundL(n) to nd a lower bound
on Eq. (5).We now consider the following distribution on xn

and yn. The sequence yn is constructed such that s[t] = 1 for
the rst n1 points, s[t] = 2 for the next n2 points up to the
last nJ points, where s[t] = J . The constraint on nj is that∑J

j=1 nj = n. Hence, we have J independent least squares
problems in J regions, and we solve the computation of the
lower bound for each region independently. In each region

j, pick a random variable θj from a beta distribution with
parameters (Cj , Cj), given by

p(θj) =
Γ(2Cj)

Γ(Cj)Γ(Cj)
θ

Cj−1
j (1− θj)Cj−1. (9)

At time instant m, m ∈ {1, 2, . . . , nj}, let the observation
yj[m] = yj for all m, where yj is such that yj [m] ∈ Rj .
The signal xj [m] is generated such that xj [m] = Ax with
probability (1 − θj) and xj [m] = −Ax with probability θj ,
independently of the previous trials. Note that the outcome
sequence is independent of the observation sequence, by con-
struction.

3.2. Loss of Sequential Regressor

We note that the accumulated expected loss of the best se-
quential regressor is lower bounded by the loss of the best se-
quential estimator which under the squared error loss is given
by the MMSE estimator

x̂j,q[m] = E
[
xj [m]|xm−1

j

]
= E

[
(1− 2θj)Ax|xm−1

j

]
,

(10)

Applying Bayes’ rule to p(θj |xm−1
j ) and using the properties

of the beta distribution, we obtain that

E
[
θj |xm−1

j

]
=

m− 1−Na + Cj

m− 1 + 2Cj
, (11)

with Na denoting the number of occurrences of Ax in the
sequence xm−1

j . Then, the best sequential estimator can be
written as

x̂j,q[m] =

m−1∑
k=1

xj [k]

m− 1 + 2Cj
. (12)

The expected loss of this estimator in region j can then be
computed as

nj∑
m=1

E

⎡
⎣
(

xj [m]− 1
m− 1 + 2Cj

m−1∑
k=1

xj [k]

)2
⎤
⎦ . (13)

Expanding the square, we nd that

E[x2
j [m]] = E[E[x2

j [m]|θj ]] = A2
x. (14)

Since given θj , xj [m] and xj [k], 1 ≤ k ≤ m − 1, are inde-
pendent, we obtain that

E

[
xj [m]

m−1∑
k=1

xj [k]

]
= E

[
E [xj [m]|θj ]E

[
m−1∑
k=1

xj [k]

∣∣∣∣∣θj

]]

= A2
x(m− 1)E

[
(1− 2θj)2

]
=

A2
x(m− 1)
2Cj + 1

. (15)
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Finally, the second square term can be rewritten as

E

⎡
⎣(m−1∑

k=1

xj [k]

)2
⎤
⎦= E

[
E
[
(Ax(m− 1)− 2AxNm−1)

2|θj

]]
,

(16)

where Nm−1 denotes the number of occurrences of −Ax in
the sequence xm−1

j . Given θj , the variable Nm−1 is a bi-
nomially distributed random variable with size (m − 1) and
parameter θj . Then we can evaluate E[(

∑m−1
k=1 xj [k])2] as

E

⎡
⎣
(

m−1∑
k=1

xj [k]

)2
⎤
⎦ (17)

= A2
x

(
2(m− 1)

Cj

2Cj + 1
+ (m− 1)2

1
2Cj + 1

)
.

Combining Eqs. (14) to (17) yields for the expected loss of
the best sequential estimator in region j

nj∑
m=1

E
[
(xj [m]− x̂j,q[m])2

]
(18)

=
nj∑

m=1

{
A2

x −
2A2

x(m− 1)
(m− 1 + 2Cj)(2Cj +1)

+
A2

x

(m− 1+ 2Cj)2(
2(m− 1)

Cj

2Cj + 1
+ (m− 1)2

1
2Cj + 1

)}
.

3.3. Loss of Batch Regressor

We now proceed and compute the expected loss of the best
batch regressor in region j which is given by

w∗j =

(
nj∑

k=1

yj [k]yT
j [k]

)−1 nj∑
k=1

yj [k]xj [k]. (19)

Exploiting the structure of yn, the expression w∗j yj[m] can be
simpli ed to w∗j yj [m] = 1/nj

∑nj

k=1 xj [k]. Now, the loss of
the batch regressor in region j can be written as

nj∑
m=1

E

⎡
⎣(xj [m]− 1

nj

nj∑
k=1

xj [k]

)2
⎤
⎦ . (20)

As before, E[x2
j [m]] is given by A2

x. The expectation of the
cross term of Eq. (20) can computed as

E

[
xj [m]

nj∑
k=1

xj [k]

]
= (21)

= E

[
E
[
x2

j [m]|θj

]
+ E [xj [m]|θj ]E

[ nj∑
k=1
k �=m

xj [k]

∣∣∣∣∣θj

]]

= E
[
A2

x +A2
x(nj − 1)(1− 2θj)2

]
= A2

x +A2
x

nj − 1
2Cj + 1

.

(22)

It remains to compute E
[(∑nj

k=1 xj [k]
)2]

, which can be rewrit-

ten using the variable Nnj denoting the number of times that
xj [m] = −Ax in the sequence x

nj

j , as

E

⎡
⎣( nj∑

k=1

xj [k]

)2
⎤
⎦ = E

[
E
[(

njAx − 2NnjAx

)2∣∣∣ θj

]]
.

(23)

Given θj , the distribution of Nnj is binomial with size nj and
parameter θj , and we get that

E

⎡
⎣
( nj∑

k=1

xj [k]

)2
⎤
⎦ = A2

x

(
2nj

Cj

2Cj + 1
+ n2

j

1
2Cj + 1

)
.

(24)

Now, the loss of the batch regressor in region j can be written
as

nj∑
m=1

{
A2

x −
2A2

x

nj

(
1 +

nj − 1
2Cj + 1

)
+

A2
x

n2
j

(
2njCj + n2

j

2Cj + 1

)}
.

(25)

We can now combine the results obtained in Eqs. (18) and
(25) for the expected loss of the best sequential and batch
regressor in each region to express L(n), after some algebra,
as

L(n) ≥ A2
x

J∑
j=1

nj∑
m=1

{
2Cj

(2Cj + 1)(m− 1 + 2Cj)
(26)

+
2Cj

nj(2Cj + 1)

}
.

The sum over m is lower bounded by its integral, and yields
that

L(n) ≥ A2
x

J∑
j=1

2Cj

(2Cj + 1)

nj∫
m=0

1
m− 1 + 2Cj

dm

≥ A2
x

2C
2C + 1

J∑
j=1

ln(nj)−G,

by choosing Cj = C ≥ 1/2 for all j and a constant G =
JA2

x
2C

2C+1 ln(2C − 1). This lower bound is valid for all in-

teger values nj satisfying
∑J

j=1 nj = n. We now let nj =
�(n/J)� for j = 1, 2, . . . , J−1, and nJ = n−(J−1)�(n/J)�.
Since (n/J)−1 ≤ �(n/J)� ≤ (n/J), application of Taylor’s
theorem to ln((n/J) − 1) about (n/J) yields for the lower
bound

L(n) ≥ JA2
x

2C
2C + 1

(
ln
(n

J

)
− 1

n− J

)
−G (27)

≥ JA2
x

2C
2C + 1

ln
(n

J

)
−G−O

(
1
n

)
. (28)
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Hence, for every 0 < ε′ ≤ 1/2, we can pick C large enough
such that

L(n) ≥ JA2
x(1− ε′) ln

(n

J

)
−G−O

(
1
n

)
(29)

≥ JA2
x(1− ε) ln

(n

J

)
−G−O

(
1
n

)
, (30)

for every ε > 0. This concludes the proof of Theorem 1.

4. LOWER BOUND ON THE REGRET FOR P -TH
ORDER REGRESSION

In this section, we extend the previous results to piecewise
linear regression of order p. Now, we assume that the obser-
vation space [−Ay, Ay]p is partitioned in J disjoint known
regions that are concentric around the origin. Then the fol-
lowing theorem holds.

Theorem 2: Let xn and yn be individual bounded sequences
with |x[t]| < Ax and |y[t]| < Ay , and let x̃q[t] form the out-
put of a sequential regression algorithm. Assume further that
the regions Rj , j = 1, 2, . . . , J , are concentric around the
origin. Then

inf
q∈Q

sup
xn,yn

1
n

{
n∑

t=1

(x[t]− x̃q[t])2− inf
w

n∑
t=1

(x[t]− wT
s[t]y[t])

2

}

≥ JA2
xp(1− ε)

n
ln
(n

J

)
− G

n
−O

(
1
n2

)
, (31)

whereQ is the class of all sequential regressors, for all ε > 0
and a positive constant G > 0.

The proof of Theorem 2 follows from the proof of The-
orem 1 by interleaving p independent subsequences in each
region to generate xn, and by constructing the sequence yn

such that the observation vector y
j
[m] ∈ R

p has its only en-

try yj �= 0 such that y
j
[m] ∈ Rj .

5. SIMULATION RESULTS

In this section we present simulation results validating that
there exists a pair of sequences xn and yn for which the re-
gret between the normalized accumulated regression error of
the piecewise linear regressor given in Eq. (3) and the batch
regressor is at least as large as the bound given in Theorem 1,
as shown in Fig. 1. These results where obtained for p = 1 by
generating the sequences xn and yn as described in the proof
of Theorem 1, for J = 11 uniform regions parsing the obser-
vation space. The bounds on the magnitude of the sequences
are Ax = 4 and Ay = 6, and ε = 0.2.

6. CONCLUSIONS

Establishing a tight lower bound on the regret of the best se-
quential regressor with respect to the regressor with access to
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Fig. 1. Simulated regret and the corresponding lower bound

the entire sequence in advance, we have shown that the piece-
wise linear regressor presented in [6] is optimal in a min-max
sense, in that the regret of any sequential predictor cannot be
much better.
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