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ABSTRACT

The seminal work of Stein in the 1950’s ignited a large body of re-
search devoted to improving the total mean-squared error (MSE) of
the least-squares (LS) estimator. A drawback of these methods is
that they improve the total MSE at the expense of increasing the
MSE of some of the individual signal components. Here we con-
sider a framework for developing linear estimators that outperform
LS over bounded norm signals, under all weighted MSE measures.
We rst derive an easily veri able condition on a linear method that
ensures LS domination for every weighted MSE. We then suggest
a minimax estimator that minimizes the worst-case MSE over all
weighting matrices and bounded norm signals subject to the univer-
sal weighted MSE domination constraint.

Index Terms— Weighted mean-squared error (MSE), minimax
MSE, domination, admissibility, component MSE.

1. INTRODUCTION

Linear regression has been studied extensively since the pioneer-
ing work of Gauss on least-squares (LS) tting. The celebrated LS
method is aimed at estimating a deterministic vector x ∈ C

m from
noisy observations y ∈ C

n which are related through

y = Hx + n, (1)

where H is a known model matrix and n is a perturbation vector.
While typically in an estimation context the goal is to construct an
estimate x̂ that is close in some sense to x, the LS design criterion is
the data error ‖ŷ− y‖2 between the estimated data ŷ = Hx̂ and y.
If the noise covariance is known, then it can be incorporated into the
data error in the form of a weighting matrix, such that the resulting
weighted LS estimate minimizes the variance among all unbiased
methods. Even though unbiasedness may be appealing intuitively, it
does not necessarily lead to a small estimation error x̂ − x. Thus,
many attempts have been made to develop linear estimators that may
be biased but closer to the true x [1, 2, 3, 4].

An alternative approach is to de ne a statistical objective which
directly measures the estimation error x̂−x. A common design cri-
terion is the total MSE given by E{‖x̂−x‖2}. Unfortunately, since
x is deterministic, this measure depends on x. One way to elim-
inate the signal dependency is to assume that x is norm-bounded,
and then minimize the worst-case MSE leading to the minimax trace
MSE (MXTM) method [5, 6]. A nice feature of this approach is that
the MXTM strategy dominates LS in the total MSE sense, so that its
total MSE is smaller than that of LS, for all bounded values of x [6].

The concept of domination leads to a partial ordering among
methods [7]. An estimator x̂1 whose MSE is no larger than that of
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a different estimate x̂2 for all values of x on a given set and strictly
smaller for some x is said to dominate x̂2. An estimate is admissible
if it is not dominated by any other strategy. The theory of LS domi-
nation is well developed since the seminal work of James and Stein
[8], in which they constructed a nonlinear estimator dominating LS
in a total MSE sense. A shortcoming of the James-Stein concept
is that it reduces the total MSE at the expense of an increase in the
individual component MSEs [9], so that speci c elements may be
severely miss-estimated. Component-wise MSE is an example of
a weighted MSE measure where different weights are given to the
individual signal elements. A desirable property we may wish our
estimator to possess is that it has “good” performance under differ-
ent choices of weighting. Therefore, we consider a broader notion of
domination: we characterize and design estimators that dominate the
LS for every choice of weighted MSE. Mathematically, this requires
that the MSE matrix of x̂ is smaller or equal (in a matrix sense) than
that of the LS method.

In Section 2, we derive an easily veri able necessary and suf -
cient condition such that a linear estimator dominates LS in a ma-
trix sense for all norm-bounded vectors x. As we show, there is
a large class of estimators with this property. An important ques-
tion is how to select a “good” strategy among all the dominating
possibilities. To this end, we suggest in Section 3 a minimax ma-
trix MSE (MXMM) method that minimizes the worst-case weighted
MSE among all weighting matrices and feasible vectors x subject to
the domination constraint. As we show, this approach has the ad-
ditional desirable property that it is admissible in a weighted MSE
sense. To evaluate the MXMM estimate we rst show that it can
be formulated as a solution to a semide nite programming problem
(SDP) [10]. We then consider, in Section 4, a broad class of settings
in which a more explicit solution can be found. In Section 5 we
compare our approach with the MXTM and LS strategies.

2. MSE MATRIX DOMINATION OF LEAST-SQUARES

We denote vectors in C
m by boldface lowercase letters and matri-

ces in C
n×m by boldface uppercase letters. The weighted norm

of x is de ned as ‖x‖2T = x∗Tx, yi is the ith element of y and
diag(δ1, . . . , δm) is an m × m diagonal matrix with diagonal ele-
ments δi. For two Hermitian matrices A and B, A � B (A � B)
means that A − B is positive de nite (semide nite). The largest
eigenvalue of a Hermitian matrix A is denoted λmax(A). The trace
and Hermitian conjugate are written as Tr(A) and A∗, respectively.

We consider the linear regression model (1) where H is a known
n×m matrix with rank m, and n is a zero-mean random vector with
covariance C � 0. We estimate x from y using a linear estimator
of the form x̂ = Gy for an m× n matrix G, where we assume that
‖x‖T ≤ L for some T � 0 and scalar L > 0.
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A popular measure of estimator performance is the total MSE

E
{‖x̂− x‖2} =

m∑
i=1

E{|x̂i − xi|2} = Tr(M(x̂)), (2)

where M(x̂), or M(G), is the MSE matrix:

M(x̂) = E {(x̂− x)(x̂− x)∗}
= (I−GH)xx∗(I−GH)∗ + GCG∗. (3)

More generally, we may consider a weighted total MSE

MSEW(x̂) = E {(x̂− x)∗W(x̂− x)} = Tr(WM(x̂)), (4)

for some weighting matrix W � 0 so that different weights are as-
signed to the individual errors. For example, choosing W = eiei∗,
where ei has 1 in the ith component and 0 otherwise, results in the
MSE of the ith component MSEW(x̂) = E{|x̂i − xi|2}.

For a given choice of W, a possible design criterion is to mini-
mize the weighted MSE (4). Unfortunately, this measure depends in
general on x, which is unknown, and therefore cannot be minimized.
The dependency on x can be eliminated by requiring that GH = I,
or restricting attention to unbiased estimators. When W = I, mini-
mizing the resulting MSE leads to the LS estimator

x̂LS = (H∗C−1H)−1H∗C−1y = GLSy. (5)

However, this does not mean that the MSE is small. It is well-known
that the MSE of LS can be large in many problems.

To directly control the MSE, a minimax total MSE (MXTM)
approach was suggested in [5], in which the worst-case total MSE
is minimized over ‖x‖T ≤ L. It was then shown in [6] that the
MXTM strategy is admissible and dominates LS in terms of total
MSE. Nonetheless, the MSE of an individual component may be
larger than that resulting from LS. To illustrate this point, in Fig. 1
we compare the MSE of the LS with that resulting from the MXTM
approach for L = 2, white noise and a random choice of H, with
n = 8, m = 5. For the MXTM estimator, the worst MSE over
‖x‖ ≤ L is plotted in each case. Fig. 1(a) considers the MSE in
estimating the rst component, as a function of the noise variance
(in dB). As can be seen from the gure, the component MSE of the
MXTM estimator can be higher than that of LS. In Fig. 1(b) we plot
the total MSE of the two methods. As expected, the total MSE of the
MXTM strategy is smaller than that of LS.

Figure 1 illustrates that minimizing the total MSE may be insuf-
cient when a weighted MSE is of interest. To ensure LS domination

for all weighted MSE, the MSE matrix of x̂ must satisfy:

M(x̂) �M(x̂LS) = (H∗C−1H)−1 �=Q, ∀ ‖x‖T ≤ L, (6)

where M(x̂) is de ned by (3). An estimator x̂ with this property
is said to matrix-dominate LS. An explicit condition for LS matrix-
domination is given in the following theorem.

Theorem 1. Let x̂ = Gy be an estimate of x in the model (1). Then
x̂ matrix-dominates LS for all ‖x‖T ≤ L if and only if

λmax

(
GCG∗ −Q + L2(I−GH)T−1(I−GH)∗

) ≤ 0.

Proof. From (3) and (6) matrix domination is equivalent to

Bxx∗B∗ + A � 0, ∀ ‖x‖T ≤ L, (7)
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Fig. 1. MSE as a function of the noise variance using the MXTM
and LS estimators (a) MSE of the rst component (b) total MSE.

where we de ned A = GCG∗ −Q and B = I −GH. In order
for (7) to be satis ed we must have that

max
‖x‖T≤L

y∗Bxx∗B∗y + y∗Ay ≤ 0, ∀y. (8)

Using the Cauchy-Scwartz inequality,

max
‖x‖T≤L

y∗Bxx∗B∗y = L2y∗BT−1B∗y. (9)

Therefore, (7) is equivalent to

L2y∗BT−1B∗y + y∗Ay ≤ 0, ∀y, (10)

or L2BT−1B∗ + A � 0, which completes the proof.

3. MINIMAX MATRIX-MSE ESTIMATOR

An important question is how to choose a “good” method among
all the LS matrix-dominating possibilities. An obvious property we
would like our approach to posses is that it is admissible in the
matrix sense, namely that it is not matrix-dominated by any other
linear strategy. In addition, we would like our estimate to have
small weighted MSE for all choices of W. To this end we pro-
pose an estimate that minimizes the worst-case weighted MSE over
all W � 0 and ‖x‖T ≤ L, subject to the matrix domination con-
dition. Since minimizing Tr(M(x̂)W) is equivalent to minimizing
αTr(M(x̂)W) for any α > 0 we assume that W � I, leading to
the following optimization problem:

min
x̂

max
x,W

{Tr(WM(x̂)) : ‖x‖T ≤ L,0 �W � I}
s.t. M(x̂) �M(x̂LS), for all ‖x‖T ≤ L. (11)

The resulting x̂ is referred to as the minimax matrix-MSE (MXMM)
estimate and is denoted by x̂MXMM .
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Since M(x̂) � 0, the inner maximization with respect to W is
obtained when W = I. Using Theorem 1, (11) reduces to

min
G

{
Tr(GCG∗) + max

‖x‖T≤L
x∗(I−GH)∗(I−GH)x

}
s.t. λmax

(
Φ(G) + L2(I−GH)T−1(I−GH)∗

) ≤ 0, (12)

where we denoted Φ(G) = GCG∗ − Q. The following theorem
establishes some important properties of the MXMM estimator:

Theorem 2. Let Ĝ be the solution to (12). Then Ĝ is unique, and
is admissible in the matrix sense.

3.1. SDP Formulation

To evaluate x̂MXMM we now formulate it as a solution to an SDP,
which is the problem of minimizing a linear function subject to linear
matrix inequalities (LMIs). Using the relation

max
x∗Tx≤L2

x∗Zx = L2λmax(ZT−1) = min
λ

{
L2λ : Z � λT

}
(13)

for any Z � 0, (12) is equivalent to

min
G

{
Tr (GCG∗) + L2λ

}
s.t. (I−GH)∗(I−GH) � λT;

λmax

(
Φ(G) + L2(I−GH)T−1(I−GH)∗

) ≤ 0. (14)

Lemma 1 reduces the dimensionality of (14) when m < n.

Lemma 1. Let the m× n matrix Ĝ be the solution to (14). Then

Ĝ = K(H∗C−1H)−1H∗C−1 = KQH∗C−1, (15)

where K is the m×m matrix that is the solution to

min
K,λ
{Tr(KQK∗) + L2λ}

s.t. (I−K)∗(I−K) � λT

KQK∗ + L2(I−K)T−1(I−K)∗ � Q. (16)

Our goal now is to convert (16) into an SDP so that the solu-
tion can be computed ef ciently. To this end, let X = KQK∗

and add this equality as a third constraint in (16). The objective
in (16) is then linear in X and λ, and the rst two constraints can
be converted into LMIs using Schur’s complement. The additional
constraint however is nonconvex. Nonetheless, replacing this equal-
ity with X � KQK∗ does not change the solution. To see this,
suppose that the solutions X̂ and K̂ to the relaxed problem satisfy
X̂ � K̂QK̂∗ but X̂ 	= K̂QK̂∗. Then X′ = K̂QK̂∗ obeys the con-
straints and Tr(X′) < Tr(X̂) (since for a matrix A � 0, Tr(A) = 0

only if A = 0) so that X̂ cannot be optimal. Applying Schur’s com-
plement to the resulting constraints leads to the following theorem.

Theorem 3. The MXMM estimator of (11) is given by

x̂MXMM = K(H∗C−1H)−1H∗C−1y

where the m×m matrix K is a solution to the SDP

min
K,X,λ

{Tr(X) + L2λ}

s.t.

[
λT I−K

(I−K)∗ I

]
� 0[

Q−X I−K
(I−K)∗ (1/L2)T

]
� 0[

X K
K∗ Q−1

]
� 0, (17)

with Q = (H∗C−1H)−1.

4. COMMUTING MATRICES

An explicit expression for the MXMM estimate when T and Q have
the same eigenvector matrix V is given below.

Theorem 4. Consider the setting of Theorem 3. Let Q = VΣV∗

where V is a unitary matrix, Σ = diag(σ1, . . . , σm) � 0 and let
T = VΛV∗ where Λ = diag(λ1, . . . , λm) � 0. Then

x̂MXMM = VDV∗(H∗C−1H)−1H∗C−1y, (18)

where D = diag(d1, . . . , dm) with

di =

{
1−√β0λi, 1−√β0λi ≥ αi;

αi, otherwise.
(19)

Here

αi =

[
L2 − σiλi

L2 + σiλi

]
+

, 1 ≤ i ≤ m, (20)

with [a]+ = a if a ≥ 0 and 0 otherwise, and β0 ≥ 0 is the unique
value satisfying G(β+) < 0 and G(β−) > 0 where β− and β+ are
the values to the right and left of β,

G(β) =
m∑

i=1

λiμ̃i(β)− L2, (21)

and for 1 ≤ i ≤ m,

μ̃i(β) =

⎧⎨⎩σi

(
1√
βλi

− 1

)
, 1−√βλi ≥ αi;

0, 1−√βλi < αi.
(22)

In order to nd β0, note that 0 ≤ β0 ≤ βTH where

βTH = max
1≤i≤m

{
(1− αi)

2

λi

}
, (23)

since for β > βTH , we have μ̃i(β) = 0, 1 ≤ i ≤ m. We also note
that G(β) is a monotonically decreasing function with G(β) → ∞
for β → 0 and G(β) = −L2 when β > βTH . Furthermore, G(β)
is continuous at all points β 	= (1 − αi)

2/λi. Therefore, there is a
unique value β such that G(β+) < 0 and G(β−) > 0 which can be
found by using a bisection algorithm on the interval [0, βTH ].

4.1. Comparison between the MXMM and MXTM Methods

It is interesting to compare the MXMM and MXTM methods in
the jointly diagonalizable case. The MXTM estimator under this
assumption is derived in [5] and has the same form as x̂MXMM of
(18),where D = diag(d̃1, . . . , d̃m) with

d̃i =

{
1−√ζλi, 1−√ζλi ≥ 0;

0. otherwise.
(24)

Here ζ is the unique value satisfying
∑m

i=1 ηi(ζ) = L2 with

ηi(ζ) =

⎧⎨⎩σi

(
1√
ζλi

− 1

)
, 1−√ζλi > 0;

0, 1−√ζλi ≤ 0.
(25)
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If the eigenvalues of T are sorted in decreasing order, then

√
ζ =

∑m
i=k+1

√
λiσi

L2 +
∑m

i=k+1 λiσi
, (26)

where k is the smallest index such that
√

ζλk+1 < 1.
Comparing with Theorem 4 leads to the following result.

Theorem 5. Consider the problem of Theorem 4. Let V, Σ
and Λ be ordered such that λ1 ≥ λ2 ≥ . . . ≥ λm. Then
the MXMM and MXTM estimators both have the form (18) with
D = diag(d1, . . . , dm) for the MXMM estimate and D =

diag(d̃1, . . . , d̃m) for the MXTM estimate where

di ≥ d̃i, 1 ≤ i ≤ m. (27)

Furthermore, the estimators coincide if

1−√ζλi ≥ αi, k + 1 ≤ i ≤ m;

αi = 0, 1 ≤ i ≤ k, (28)

where ζ is given by (26) and k is the smallest index such that 0 ≤
k ≤ m− 1 and

√
ζλk+1 < 1. In particular, if L2 ≤ σiλi, 1 ≤ i ≤

m, then the MXMM and MXTM methods are equivalent.

We conclude that the shrinkage of the MXTM estimate is larger
than that of the MXMM method. Evidently, larger shrinkage can
decrease the total MSE at the expense of increasing the MSE of some
components.

5. EXAMPLES

We now compare the MSE performance of the MXTM, the proposed
MXMM, and the LS methods. We consider two measures of MSE:
Trace MSE and the MSE of the 1st component.

We generate a random model matrix H with n = 7, m = 5
and a random vector x. The noise is assumed to be white, T = I
and L = ‖x‖. In Fig. 2 we plot the MSE as a function of the noise
variance (in dB) for the MXMM, MXTM and LS estimators. In
this example, L2 ≈ 5. The MSE of the 1st component is plotted
in Fig. 2(a) and the trace MSE divided by m in Fig. 2(b). Interest-
ingly, the trace MSE of the MXMM and MXTM methods are very
similar, while the MSE of the 1st component is much lower using
the MXMM approach. Note that the MXTM estimator is only guar-
anteed to have smaller total MSE for the worst-case x, so that it is
possible, as we see in the gure, to achieve lower total MSE with
the MXMM strategy for other choices of x. It is also evident from
the gures that the MXMM method dominates LS in terms of both
trace and component-wise MSE, while the MXTM approach domi-
nates LS only in the trace MSE sense. The behavior in Fig. 2 seems
to be representative of the performance in random models. In simu-
lations we observed that often the trace behavior of the MXMM and
MXTM methods are similar, while the component-wise performance
of MXMM is typically much better. Thus, it seems like the MXMM
approach can substantially decrease the weighted MSE with only a
small increase in the trace MSE.
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