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ABSTRACT

Shifted excitation Raman spectroscopy results in multiple ob-
servations of the sum of a material’s uorescent and Raman spectra.
The uorescent spectrum is typically stationary with respect to the
excitation frequency induced by the instrument, while the Raman
spectrum is subject to a nonlinear shift which depends explicitly and
in a known manner upon the excitation frequency. This phenomenon
has been exploited to reconstruct Raman spectra indirectly by sub-
tracting spectra observed at two closely spaced excitation frequen-
cies. The technique, known as Shifted Excitation Raman Difference
Spectroscopy (SERDS), is of limited utility, however, in that obser-
vations with low photon counts are dif cult to process accurately,
and that one must still reconstruct the spectrum from the estimate
of the derivative. This paper presents an innovative alternative ap-
proach to Raman spectrum reconstruction based on an expectation-
maximization algorithm and multiresolution photon-limited signal
analysis. Using this method, it is shown that using multiple excita-
tion frequencies (while keeping the total excitation laser power and
total expected photon counts constant) can result in dramatic im-
provements in reconstruction accuracy.

Index Terms— Poisson processes, Wavelet transforms, Ra-
man spectroscopy, Inverse problems

1. SHIFTED EXCITATION RAMAN
SPECTROSCOPY

Raman spectroscopy is widely used to study vibrational modes
of molecules in a material; since these modes depend upon
the chemical bonds in the material, Raman spectroscopy has
enormous potential for material speci city in a broad range of
applications [1]. While use of this technology is steadily in-
creasing with the development of cheaper and more ef cient
photon detectors and laser sources, the effectiveness is im-
peded by strong uorescent background spectra which over-
whelm the weaker Raman spectra [2]. This key challenge
is frequently addressed via shifted excitation Raman spec-
troscopy (SERS), the process by which the Raman spectrum
of a material is estimated using multiple (typically two) noisy
observations of the spectrum collected at different (shifted)
excitation frequencies. In this context, we may model the in-
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tensity of each observed spectrum as the sum of the mate-
rial’s uorescent spectrum and its Raman spectrum. The u-
orescent spectrum is stationary with respect to the excitation
frequency induced by the instrument, meaning that every ob-
served spectrum, regardless of excitation frequency, contains
noisy observations of the same uorescent spectrum. This is
a result of Kasha’s rule, which states that most of the uo-
rescence is emitted from relaxed vibrational states, so that a
small change in excitation frequency does not change the u-
orescent spectrum [3]. In contrast, the Raman spectrum is
subject to a nonlinear shift which depends explicitly and in a
known manner upon the excitation frequency. For more on
the physics underlying SERS, see for example [2, 3, 4].

1.1. Problem Formulation

In this paper, the following notation will be used: let ν index
frequencies at which spectra are observed, and νE an excita-
tion frequency. Denote the uorescent and Raman spectra as
SF (ν) and SR(ν), respectively, and let

SE(ν) = AE (SF (ν) + hE(SR(ν))) ,

where AE is a scalar proportional to the power of the excita-
tion laser (so that higher-powered lasers result in more photon
counts) and hE is the operator which shifts the Raman spec-
trum an a manner dependent upon the excitation frequency
νE . For example, we may assume hE behaves as follows:

hE

(
SR(ν)

)
= SR(ν + caνE + cbννE)

for some constants ca > 0 and cb ≥ 0. Many researchers,
depending upon the speci cs of their application, reasonably
assume cb = 0, simplifying this expression and the subse-
quent numerical analysis [2, 3, 4]. The method described in
this paper would certainly hold for cb = 0, but we include
it in our analysis because the result is then more broadly ap-
plicable. Note that the main results of this paper hold for a
broad class of functionals hE , not only the one explored in
this paper, and that in general hE must model the physics of
the SERS system.
Consider the discrete spectra de ned by integration sam-
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pling at the detector array as follows:

SM [n] ≡
∫ (n+1)/N

n/N

SM (ν)dν

SM =
[
SM [0] · · ·SM [N − 1]

]T

for n = 0, . . . , N − 1 and for M ∈ {F,R, E}, where the
frequency ν has been normalized to lie in the range [0, 1]. We
then have the following observation model:

yE ∼ Poisson(SE).

1.2. Prior Work in SERDS

The phenomenon of uorescent spectra remaining stationary
while Raman spectra shift under different excitation frequen-
cies has been used previously to estimate Raman spectra SR.
In particular, one common approach is to collect observations
under two different excitation frequencies, νE1 and νE2 , such
that νE1 − νE2 is small and AE1 = AE2 . Note that

SE1(ν)− SE2(ν)
= AE1

(
hE1(SR(ν))− hE2(SR(ν))

)
= AE1

(
SR(ν + caνE1 + cbννE1)

−SR(ν + caνE2 + cbννE2)
)

Thus, the discrete signal yE1−yE2 can be considered a noisy
observation of the discrete derivative of SR.
For large AE1 (i.e. large photon counts), the observations

can be used to estimate this discrete derivative with reason-
able accuracy, and from there one can begin to extract impor-
tant features of the Raman spectrum. Common approaches to
estimating SR from yE1 − yE2 include the following:

• Least-squares tting of Lorentzian functions to the dif-
ference yE1 − yE2 [2] – this is a particularly challeng-
ing optimization problem when one has no prior knowl-
edge of the locations of the peaks in the true Raman
spectrum.

• Numerically integrating the discrete derivative, possi-
bly in conjunction with linear interpolation between the
data points [3] – this is only effective in high SNR sce-
narios.

• Viewing yE1 − yE2 as noisy observations of SR con-
volved with δ[·] − δ[· + ca(νE1 − νE2)], and then per-
forming deconvolution [4] – this is only effective in
high SNR scenarios.

1.3. Advantages of the Proposed Approach

In general, most approaches have two key drawbacks: (1) when
one wishes to keep AE1 low (for example, when studying the
spectra of tissue in vivo), the resulting photon-limited obser-
vations make accurate estimation of the derivative of SR and

subsequent inference very challenging, and (2) the methods
do not provide a convenient mechanism for estimating SR

using observations from multiple (more than two) excitation
frequencies. The innovative method proposed in this paper
addresses these challenges by posing the estimation of SR as
a Poisson inverse problem and using multiscale Poisson inten-
sity estimation methods to yield highly accurate results. It is
shown that ifK denotes the number of excitation frequencies
used, and if the total excitation power is held constant (i.e.
AE1 = AE2 = · · · = AEK

and
∑

k AEk
= AΣ), then the re-

construction accuracy remarkably increases with K even as
the SNR of each observed spectrum decreases.

2. POISSON INVERSE PROBLEM FORMULATION

Let yk, for k = 1, . . . , K, denote the kth N -dimensional ob-
served spectra, resulting from excitation frequency νEk

and
with amplitudeAEk

≡ AΣ/K for someAΣ > 0. This results
in a total ofN ·K measurements which can be stacked into a
single column vector

y ≡ [yT
1 yT

2 · · ·yT
K ]T .

We can likewise write the spectra SR and SF as a stacked
discrete column vector with 2N elements: S ≡ [ST

F ST
R]T .

Finally, we can write our observation model as

y ∼ Poisson(HS)

whereH in aNK× 2N matrix which encapsulates the mea-
surement model described Section 1.1.
Using this model, we clearly have a Poisson inverse prob-

lem which can be solved using the expectation-maximization
(EM) algorithm. In particular, we will use the EM algorithm
described in [5], which augments the classical Richardson-
Lucy algorithm with Maximum Penalized Likelihood estima-
tion in the M-step. The resulting method consists of itera-
tively repeating backprojection in the E-step and Poisson de-
noising in the M-step. Speci cally, the E-step consists of a
standard Richardson-Lucy iteration:

x(t) = Ŝ(t).×
(
HT

(
y./

(
HŜ(t)

)))
,

where .× and ./ denote element-wise multiplication and divi-
sion of vectors, respectively. The M-step consists of denois-
ing x(t) as described in Section 3.

3. MULTISCALE REGULARIZATION

The multiresolution Poisson denoising method of regulariza-
tion employed in this paper is referred to a TI-Haar tree prun-
ing. Intensity estimates are calculated from noisy realizations
in x(t) by determining the ideal partition of the domain of
observations (assumed to be [0, 1] for both the Raman and
the uorescent spectra) and computing the sample average in
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each interval of the optimal partition. (We will drop the (t)
notation for the remainder of this section.) This approach and
its theoretical properties are detailed in [6, 7] and brie y re-
viewed in this section.
The space of possible partitions is a nested hierarchy de-

ned through a recursive dyadic partition (RDP) of [0, 1], and
the optimal partition is selected by pruning a binary tree rep-
resentation of the observed data. (This binary tree is referred
to as a complete RDP.) This gives our estimators the capa-
bility of varying the resolution with the frequency ν to auto-
matically increase the smoothing in very regular regions of
the spectra and to preserve detailed structure in less regular
regions. Pruning decisions are made using a penalized likeli-
hood criterion.
In general, the RDP framework leads to a model selection

problem that can be solved by a tree pruning process. Each of
the terminal intervals in the pruned RDP could correspond to
a region of homogeneous or smoothly varying spectral inten-
sity. Such a partition can be obtained by merging neighboring
intervals of (i.e. pruning) a complete RDP to form a data-
adaptive RDP P and tting sample averages to the terminal
intervals of P . Thus the spectrum estimate, Ŝ, is completely
described by P . Given a partition estimate P̂ , Ŝ can be cal-
culated by computing the sample average of the observations
over each interval in P̂ .
This provides for a very simple framework for penalized

likelihood estimation, wherein the penalization is based on
the complexity of the underlying partition. The goal here is
to nd the partition which minimizes the penalized likelihood
function:

P̂ ≡ argmin
P

[
− log p(x | S(P̂)) + pen(P̂)

]
Ŝ ≡ S(P̂) (1)

where

p(x|S(P̂)) =
N−1∏
i=0

e−S[i]S[i]x[i]

x[i]!

denotes the likelihood of observing x given the spectrum es-
timate S(P̂) and where pen(P̂) is the penalty associated with
the estimate S(P̂). (We penalize the estimates according to
a codelength required to uniquely describe each model with a
pre x code; the penalties are discussed in detail in [7].) The
resulting estimator Ŝ is referred to as the maximum penalized
likelihood estimator (MPLE).
The accuracy of these estimates can be augmented by a

process called cycle-spinning, or averaging over shifts, result-
ing in translation-invariant (TI) estimates [8]. Cycle-spinning,
as originally proposed, requires O (N log N) operations, but
was derived in the context of undecimated wavelet coef cient
thresholding in the presence of Gaussian noise, and is dif-
cult to implement ef ciently in the case of Poisson noise.
The above multiscale tree-pruning method can be modi ed to
produce the same effect by averaging over shifts, but the in-
crease in quality comes at a high computational cost; na¨ve

algorithms require O(N2) operations. Novel computational
methods, as described in [9], however, can be used to yield TI-
Haar tree pruning estimates in O (N log N) time. Unlike tra-
ditional wavelet thresholding techniques, this method is near
minimax optimal for Poisson noise distributions and is robust
to noise due to the hereditary nature of the tree-pruning pro-
cess.

4. SIMULATION RESULTS

We have conducted preliminary experiments to demonstrate
that one can improve upon SERDS by using multiple excita-
tion frequencies and the Poisson inverse problem framework
combined with multiscale regularization as described above.
In particular, this simulation experiment holds the total exci-
tation laser power AΣ =

∑
k AEk

(and hence total expected
number of observed photons) constant, so that more excita-
tion frequencies imply more observed spectra, each with a
lower SNR.
To generate the experimental data, we set

SF (ν) =
5ν4(1− ν)8

β(5, 9)
+ 0.01

where β(·, ·) is the Beta function, to have the smooth shape
of a Beta probability distribution function. The Raman spec-
trum was a mixture of ve Gaussians with random means,
variances, and amplitudes. Figure 1 displays a sample set of
spectra.
The method was initialized as follows: for each index n,

Ŝ
(0)
F [n] was set to the mean of the K − 1 smallest values
of yk[n] for k = 1, . . . , K because the largest value could
potentially correspond to a peak in the Raman spectrum at
the corresponding excitation frequency. To compute Ŝ

(0)
R , we

set zk = yk − Ŝ
(0)
F to be a rough estimate of the Raman

spectrum at each of the K shifts. We then “unshift” each zk

to produce an estimate of the Raman spectrum at excitation
frequency E1 and set Ŝ

(0)
R to the average over k. While this

method of initialization yielded relatively accurate estimates
in the presence of high photon counts, it was less effective
for low SNRs, and the ultimate reconstruction accuracy was
chie y due to the ef cacy of the proposed Poisson inverse
problem framework and multiscale regularization.
For each setting of K ∈ {2, 5, 10, 20, 40} we ran one

hundred realizations of the Raman spectrum and the Pois-
son noise to compute average mean squared errors (MSE).
The algorithm terminated the iterations whenmaxn(Ŝ(t)

R [n]−
Ŝ

(t−1)
R [n]) ≤ 10−5. The penalty term in (1) was multiplied
by a scalar weight to improve empirical performance. The
weight was not selected to minimize any particular error met-
ric, but rather to yield generally accurate reconstructions. The
below table summarizes the results:
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Mean Photon Count Average
K per Sample MSE
2 1000 0.159
5 400 0.090
10 200 0.059
20 100 0.053
40 50 0.050
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Fig. 1. Experimental results. (a) Representative one of two ob-
served spectra. (b) Representative one of ten observed spectra. (c)
Representative one of forty observed spectra. (d) Reconstructed
Raman spectrum using two excitation frequencies; MSE = 0.147.
(e) Reconstructed Raman spectrum using ten excitation frequencies;
MSE = 0.047. (f) Reconstructed Raman spectrum using forty exci-
tation frequencies; MSE = 0.037.

An example result for this experiment is displayed in Fig-
ure 1. Clearly the observations are very noisy for K = 40,
but using the proposed method to exploit the shifting of the
Raman spectrum with excitation frequency yielded a signi -
cantly better reconstruction than was possible when only us-
ing two excitation frequencies (as is the SERDS convention).

5. CONCLUSIONS

This paper demonstrates Shifted Excitation Raman Spec-
troscopy (SERS) can yield highly accurate reconstructions

when using multiple excitation frequencies. While conven-
tional techniques only use two excitation frequencies and
perform reconstruction via a discrete estimate of the Raman
spectrum derivative, the method described in this paper poses
the reconstruction as a Poisson inverse problem. Combin-
ing this framework with multiscale Poisson intensity estima-
tion methods yields accurate reconstructions from very noisy,
photon-limited observations using as many as forty different
excitation frequencies. Because a signi cant improvement
in accuracy was achieved without an increase in excitation
laser power, the proposed method has the potential to advance
Raman spectroscopy in a variety of application domains, in-
cluding biological applications where high laser power could
damage the system under study. Preliminary work with real
spectroscopic measurements of tissue samples further sup-
ports this potential.
While the proposed method has resulted in promising ex-

perimental results, several open questions remain to be ad-
dressed. These include an investigation into the optimal
method of choosing theK excitation frequencies.
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