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ABSTRACT

The problem of hypothesis testing against independence for a Gauss-
Markov random eld (GMRF) with nearest-neighbor dependency graph
is analyzed. The sensors measuring samples from the signal eld are
placed IID according to the uniform distribution. The asymptotic perfor-
mance of Neyman-Pearson detection is characterized through the large-
deviation theory. An expression for the error exponent is derived using
a special law of large numbers for graph functionals. The exponent is
analyzed for different values of the variance ratio and correlation. It is
found that a more correlated GMRF has a higher exponent (improved
detection performance) at low values of the variance ratio, whereas the
opposite is true at high values of the ratio.

Index Terms— Signal detection, Gaussian processes, Markov processes,

Error analysis, Graph theory.

1. INTRODUCTION

For distributed detection, the so-called conditionally IID assumption
is mathematically convenient and is widely assumed in the literature.
The assumption states that conditioned on a particular hypothesis,
the observations at sensors are independent and identically distrib-
uted. In practice, however, sensors observe correlated data, since
natural spatial signals have stochastic dependence. Moreover, spatial
random signals are typically acausal in contrast to temporal signals.
In the literature, the two are usually distinguished by referring to
acausal signals as random elds (RF) and causal signals as random
processes (RP).

In this paper, we consider the detection problem of a Gauss-
Markov random eld. See Fig.1. We consider the Neyman-Pearson
(NP) formulation, where the detector is optimal at a xed false-alarm
probability. For any positive xed level of false alarm, when the
miss-detection probability PM (n) of the NP detector decays expo-
nentially with the sample size n, we have the error exponent

D
Δ
=− lim

n→∞

1

n
log PM (n). (1)

The error exponent is an important performance measure since a
large exponent implies faster decay of error probability with increas-
ing sample size.

In this paper, we evaluate the error exponent for NP detection
of GMRF, restricting to a class of GMRFs with nearest-neighbor de-
pendency graph. This assumption has been employed in areas of
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(a) H1 : Gauss-Markov random
eld on nearest-neighbor graph.

(b)H0 : Independent observations.

Figure 1: Illustration of the hypothesis-testing problem.

applied science, including the social sciences, geography and ecol-
ogy, where proximity data is often important.

We assume that the sensors observing the signal eld are placed
IID according to the uniform distribution. This results in a non-
stationary GMRF ( for the de nition of stationary GMRF, see [1, p.
57] ). We analyze the detection performance assuming access to all
the observations, when the number of sensors goes to in nity, by way
of the coverage area of the nodes going to in nity, while keeping the
node density xed.

1.1. Related work and contributions
The kind of hypothesis testing we consider is called testing against
independence. In [2], problems of this kind are considered, with rate
constraints on the channels and for only two sources, with large num-
ber of samples at each source. In this paper, we assume that there are
no constraints on the channel and that the observations have a spe-
ci c correlation structure of the GMRF. However, our formulation is
different since there is a single observation at every sensor, and the
number of sensors goes to in nity.

The detection of Gauss-Markov random processes (GMRP) in
Gaussian noise is a classical problem [3]. There is an extensive liter-
ature on the large-deviations approach to the analysis of detection of
GMRP, but closed-form expressions have been derived only for some
special cases, e.g., [4]. An approach to characterizing the GMRP via
inversion algorithms for block banded matrices has been presented
in [5]. However, these approaches are not amenable to the exten-
sion of the problem to planar and higher dimensional spaces, since
they deal with random processes rather than random elds, or to the
random placement of nodes.

To our knowledge, the asymptotic performance of detection of
acausal non-stationary GMRF has not been analyzed in the past.
We pursue a graph-theoretic approach and exploit recent advances
in computational geometry [6]. We provide an expression for the
log-likelihood ratio of detection by exploiting the properties of the
nearest-neighbor graph. By casting the error exponent as the limit of
a graph functional, we are able to apply the law of large numbers for
functionals on graphs derived in [6]. We then numerically evaluate
the exponent for different values of the variance ratio and correla-
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tion, assuming exponential-correlation function. We conclude for a
xed node density that a more correlated GMRF has a higher expo-
nent at low values of variance ratio whereas the situation is reversed
at high values.

1.2. Notation and organization
Vectors and matrices are written in boldface. Random variables are
in capital letters, random processes and random elds in boldface
capitals and sets in calligraphic font. For the matrix A = [A(i, j)],
A(i, j) denotes the element in the ith row and j th column and |A| its
determinant.

An undirected graph G is a tuple G = (V, E) where V is the
vertex set and E = {(i, j), i, j ∈ V, i �= j} is the edge set. When i

and j have an edge between them, i and j are neighbors denoted by
i ∼ j (otherwise it is i � j). The neighborhood function of a node i

is the set of all other nodes having an edge with it, i.e.,

Ne(i) = {j ∈ V : j �= i, (i, j) ∈ E}. (2)

The number of neighbors of a node i is called its degree, Deg(i). Let
rij denote the Euclidean edge length of (i, j). A node with a single
edge i.e., its degree is 1 is known as a leaf and the corresponding
edge as a leaf edge. In this paper, we consider the terms node, vertex
and sensor interchangeable.

Our paper is organized as follows. We provide the description
of the GMRF in section 2 and describe the nearest-neighbor graph
and the correlation function in sections 2.1 and 3.1. We provide the
problem statement in section 3. In section 4, we derive a closed-
form expression for the log-likelihood ratio. We evaluate the error
exponent in section 5 and provide numerical results for the exponent
in section 5.1. Section 6 concludes the paper.

2. GAUSS-MARKOV RANDOM FIELD (GMRF)

Gauss-Markov random elds, in addition to being Gaussian random
elds, satisfy conditional-independence properties. A simple exam-
ple for GMRF is the rst order auto-regressive process. In this case,
the conditional independence of the observations is based on causal-
ity. However, for spatial observations we need a more general de n-
ition [1, p. 21].

De nition 1 (GMRF) Given a point set V = {1, . . . , n}, Y(V) =
{Yi : i ∈ V} is a GMRF with an (undirected) dependency graph
G(V, E) if Y(V) is a Gaussian random eld, and ∀i, j ∈ V , Yi

and Yj are conditionally independent given observations at all other
nodes iff i and j are not neighbors, i.e.,

Yi ⊥ Yj |Y−ij ⇐⇒ i � j, ∀i, j ∈ V, i �= j, (3)

where ⊥ denotes conditional independence and Y−ij
Δ
=(Yk : k ∈

V, k �= i, j).

This implies that the conditional distribution at a node given the
observations at its neighbors is independent of the rest of the net-
work. A common approach to formulating a GMRF is to specify
the graph through a neighborhood rule, and then to specify the cor-
relation function between these neighbors. In general the neighbors
of a node are those which are in its ‘proximity’, usually in terms of
the Euclidean distance [1, 7]. With a regular lattice structure (e.g.,
in image processing), a xed set of neighbors can be speci ed in a
straight-forward manner [7]. However, the situation is more compli-
cated for arbitrarily placed nodes. We assume the dependency graph
to be the nearest-neighbor graph (NNG), described below.

2.1. Nearest-neighbor graph

The nearest-neighbor function of a node i ∈ V , is de ned as,

nn(i)Δ
=arg min

j∈V,j �=i
dist(i, j), (4)

where dist(·, ·) is the Euclidean distance. For the random point sets
considered here, the inter-point distances are unique with probability
1. Therefore, (4) is a well-de ned function for every node, almost
surely. The nearest-neighbor (undirected) graph G(V, E) is given by

(i, j) ∈ E ⇐⇒ i = nn(j) or j = nn(i). (5)

NNG is acyclic with a maximum node degree of 5 almost surely [8].

3. PROBLEM STATEMENT

Let (Bn)n≥1 denote a sequence of squares or circles of area n

λ
, cen-

tered at the origin, for any positive constant λ. Let Un,λ be a bino-
mial point process on Bn with intensity λ, i.e., n nodes distributed
i.i.d uniform on the region Bn with node density λ. We are inter-
ested in the detection performance when the number of nodes goes
to in nity, with xed node density, i.e., n →∞ with λ xed.

LetYn be the random vector of observation samples Yi,

Yn
Δ
=[Y1, . . . , Yn]T . (6)

Given a set of nodes V drawn from Un,λ, the hypothesis-testing
problem is as follows,

H0 : Yn ∼ N (0, σ
2
0I) vs. H1 : Yn ∼ N (0, Σ1,V),

whereΣ1,V is the covariance matrix of a GMRF, which depends on
the con guration of nodes in V , described in detail in section 3.1.

We assume that the point process Un,λ is the same under both
hypotheses and also that the node locations are known. Therefore,
the optimal decision rule is a threshold test based on the conditional
log-likelihood ratio. Let p[Yn|V;Hj ] be the conditional PDF of the
observations given V ∼ Un,λ under hypothesis j. The Kullback-
Leibler rate with respect to the sample size n is given by

1

n
log

p[Yn|V;H0]

p[Yn|V;H1]
.

The error exponent under the Neyman-Pearson detection is given
by the almost-sure limit of the Kullback-Leibler rate under the null
hypothesis, assuming that the limit exists [9]. Therefore, the error
exponent D of NP detection in (1) is given by

D = lim
n→∞

1

n
log

p[Yn|V;H0]

p[Yn|V;H1]
, a.s. [H0] (7)

= lim
n→∞

1

2n

�
log

|Σ1,V |
|σ2

0I|
+ Y

T
n {Σ−1

1,V

−(σ2
0I)

−1}Yn

�
a.s. [H0],

where a.s. [H0] denotes the almost-sure limit under null hypothesis.
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3.1. Correlation function

We make additional assumptions on the structure of the covariance
matrix Σ1,V of the GMRF under H1 viz., the nodes have the same
measurement variance for any node con guration, i.e.,

Σ1,V(i, i)
Δ
=σ

2
1 i = 1, . . . , n. (8)

We denote the ratio between the variances under the alternative and
the null hypothesis at each node by

K
Δ
=

σ2
1

σ2
0

. (9)

We assume that the correlation function between the neighbors of
the nearest-neighbor graph is speci ed by an arbitrary function g,
which has the Euclidean edge length rij as its argument i.e.,

g(rij)
Δ
=

Σ1,V (i, j)

σ2
1

, ∀ (i, j) ∈ E . (10)

In general, g is a monotonically non-increasing function of the edge
length, and g(0) = M < 1 (de ned as the nugget), in geo-statistics
[10]. We assume that g(r) < 1, r ∈ �+, e.g.,

g(r) = Me−ar
, g(r) =

M

1 + ra
, a ≥ 0, 0 ≤ M < 1.

4. EXPRESSION FOR LOG-LIKELIHOOD RATIO

The inverse of the covariance matrix of a GMRF is known as the
potential matrix or precision matrix or information matrix. The non-
zero elements of the potential matrixA of a GMRF are in one to one
correspondence with the edges of its graph G(V, E) [1, Theorem 2.2]
in the sense that

i � j ⇐⇒ A(i, j) = 0, ∀i, j ∈ V, i �= j. (11)

The simple relationship between the conditional independence of the
GMRF and the zero structure of its potential matrix is not evident in
covariance matrix, which is a completely dense matrix. Therefore, it
is easier to evaluate the log-likelihood ratio in (7) through the poten-
tial matrix. We now provide expressions for the joint distribution of
the GMRF through the potential matrix and its determinant. Note,
the joint distribution can also be derived in terms of the marginal
probability of the nodes and the joint probability at the edges of the
acyclic dependency graph [11].

Theorem 1 [Coef cients and determinant of potential matrix] Un-
der assumptions (8-10), given the correlation function g and edge
lengths rij > 0, the coef cients of potential matrixA

Δ
=Σ

−1
1,V are

A(i, i) =
1

σ2
1

+
�

j∈Ne(i)

g2(rij)

σ2
1(1− g2(rij))

, (12)

A(i, j) =

��
�

−g(rij)

σ2
1(1− g2(rij))

if i ∼ j,

0 o.w.
(13)

The determinant of the potential matrix ofA is given by

|A| = 1

σ2n
1

�
(i,j)∈E

i<j

1

1− g2(rij)
. (14)

Proof : Direct inverse, by exploiting the acyclicity of NNG. For the
determinant, using (12) and (13), we recursively derive the deter-
minant of a component, starting at the leaf. An acyclic graph with
atleast an edge has a leaf. See [12]. �

Using the expressions for the coef cients and determinant, we
have a closed-form expression for (7). Furthermore, (12-14) lead to
explicit data fusion and routing schemes [13]. To derive the error ex-
ponent, we need to evaluate the Kullback-Leibler rate under the null
hypothesis, where the observations Yi’s are i.i.d and independent of
the point process Un,λ. To do this, we cast the error exponent as
the limit of a graph functional, with the nodes drawn from a marked
binomial point process with marking variable Yi.

Lemma 1 (D as a graph functional) Under the assumptions (8-10),
the error exponent D for Neyman-Pearson detection of GMRF with
nearest-neighbor dependency graph G(V, E), expressed as the sum
of edge and node functionals of a marked point set V ∼ Un,λ with
marking variable Yi, is

D = log
σ1

σ0
+ lim

n→∞

1

2n

��
i∈V

� 1

σ2
1

− 1

σ2
0

�
Y

2
i

+
�

(i,j)∈E
i<j

	
log[1− g

2(Rij)] +
g2(Rij)

1− g2(Rij)

Y 2
i + Y 2

j

σ2
1

− 2g(Rij)

1− g2(Rij)

YiYj

σ2
1


�
, Yi

i.i.d∼ N (0, σ
2
0), (15)

whereRij denotes the (random) Euclidean edge length of (i, j) ∈ E ,
that depends on the underlying binomial point process Un,λ. The
condition i < j ensures that every edge is counted only once.
Proof : Substitute (12-14) in (7). �

5. ERROR EXPONENT

We showed in lemma 1 that the error exponent reduces to the limit of
a graph functional. In this section, we apply the law of large numbers
for graph functionals to evaluate the limit.

Theorem 2 (An expression for D) The error exponentD for Neyman-
Pearson detection with node density λ and correlation function g is

D =
1

2

�
Ef(g(Z1))− π

2ω
Ef(g(Z2)) + log K +

1

K
− 1

, (16)

where f is de ned by,

f(x)
Δ
= log[1− x

2] +
2x2

K[1− x2]
, (17)

Z1 and Z2 are Rayleigh distributed with variances (2πλ)−1 and
(2ωλ)−1, and ω is given by

ω =
4π

3
+

√
3

2
≈ 5.06, (18)

III  831



10 5 0 5 10
0

1

2

3

4

5

6

K in dB

Er
ro
re
xp
on
en
tD

a = 0

a → ∞
a = 0.5

(a) Different values of correlation coef cient a, nugget g(0) = M = 0.5.

10 5 0 5 10
0

2

4

6

8

10

12

K in dB

Er
ro
re
xp
on
en
tD

M = 0

M = 0.9

M = 0.5

(b) Different values of nugget g(0) = M , correlation coef cient a = 0.5.

Figure 2: Error exponent D vs. ratio of variances K, node density λ = 1. See (16-19).

and is the area of the union of two unit-radii circles with centers unit
distant apart.

Proof : By law of large numbers for graph functionals derived in [6,
p. 287]. See [12] for details. �

In (16), except for the rst two f -terms which capture the cor-
relation structure of the GMRF, the remaining terms represent the
detection-error exponent for two IID Gaussian processes.

5.1. Numerical results
In this section, we focus on a speci c correlation function namely
the exponential-correlation function

g(r) = Me−ar
, a > 0, 0 < M < 1. (19)

Using theorem 2, we numerically evaluate D through Monte-Carlo
runs. For xed values ofK andM , we have

D(K, M, λ, a) = D(K, M, 1,
a√
λ

), (20)

which we obtain by changing the integration variable in the expecta-
tion term in (16). Therefore, in terms of the error exponent, increas-
ing the node density λ is equivalent to a lower correlation coef cient
at unit density. Here, we plot the effects of correlation coef cient a
and nuggetM on D.

In Fig.2(a), we plot the error exponent at λ = 1 andM = 0.5,
for different values of correlation coef cient a. Note, the cases a =
0 and a → ∞ correspond to constant correlation (of value M ) and
the independent case. We notice that a more correlated GMRF or the
one with smaller a has a higher exponent at low value ofK, whereas
the situation is reversed at highK. Equivalently, increasing the node
density λ improves the exponent at low value of K, but not at high
K. Also, when the variance ratio K is large enough, D appears to
increase linearly withK (in dB), and the correlation coef cient a and
nugget M appear to have little effect, as expected from theorem 2.
In Fig.2(b), we plot the exponent at constant correlation coef cient
a = 0.5, for different values of the nugget M . We notice a similar
behavior as the correlation coef cient. A higher value of M results
in a higher exponent at lowK, but not at highK.

6. CONCLUSION

In this paper, we derived a closed-form expression for the likelihood
function of a Gauss-Markov random eld and then employed the law
of large numbers for graph functionals to derive its Neyman-Pearson
detection-error exponent. Energy-ef cient data fusion and routing

schemes to achieve this exponent in a distributed way are currently
under investigation [13]. Although, we have assumed identical vari-
ance at every sensor, a spatially-varying variance model can be in-
corporated into our results. We have focused on the GMRF with
nearest-neighbor dependency graph, which is a simplifying assump-
tion. Although, the law of large numbers is valid for a number of
proximity graphs, which have edges between “nearby” points, the
actual evaluation of the log-likelihood ratio and the exponent are in-
tractable for most of these graphs. Moreover, GMRF with small
neighborhood structure has been demonstrated to approximate the
hidden GMRF [14] as well as the Gaussian eld with long correla-
tion lengths [15], reasonably well.
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