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ABSTRACT

The estimation of signal covariance matrices is a crucial part of many
signal processing algorithms. In some applications, the structure of
the problem suggests that the underlying, true, covariance matrix
is the Kronecker product of two matrices. Examples of such prob-
lems are channel modelling for MIMO communications and signal
modelling of EEG data. In applications it may also be that the Kro-
necker factors in turn can be assumed to possess additional, linear,
structure. The maximum likelihood (ML) estimator for the problem
has been proposed previously. It is asymptotically efficient but has
the drawback of requiring an iterative search. Two methods that are
both non-iterative and asymptotically efficient are proposed in this
paper. The first method is derived from a well-known iterative max-
imization technique for the likelihood function. It performs on par
with ML in simulations, but has the drawback of not allowing for
extra structure in addition to the Kronecker structure. The second
method is based on covariance matching principles, and does not
suffer from this drawback. However, while the large sample perfor-
mance is shown to be identical to ML, it performs somewhat worse
in small samples than the first estimator. In addition, the Cramér-Rao
lower bound (CRB) for the problem is derived in a compact form.

Index Terms— Estimation, MIMO systems, Covariance matri-
ces, Maximum likelihood estimation

1. INTRODUCTION

In statistical modelling of multiple input multiple output (MIMO)
channels, Kronecker structured channel covariance matrices are of-
ten assumed [1], [2]. This assumption implies that

Cov [ vec{H} ] = A⊗B (1)

where H is the stochastic n × m channel matrix, ⊗ denotes Kro-
necker matrix product, vec{ } denotes the vectorization operator (see,
e.g., [3]), A is an m × m transmit covariance matrix, and B is an
n× n receive covariance matrix. Estimating such matrices is useful
in the design and analysis of signal processing algorithms for MIMO
communications. Imposing the structure implied by the Kronecker
assumption gives the advantages of leading to more accurate esti-
mators, of reducing the number of parameters needed when feeding
back channel statistics, and of allowing for a reduced algorithm com-
plexity. Models such as (1) also appear naturally when modelling
spatio-temporal noise processes in MEG/EEG data [4]. In statistics,
processes with covariance matrices that satisfy (1) are referred to as
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separable [5], [6]. The problem of estimating such a covariance ma-
trix from a set of data naturally leads to the maximum likelihood
(ML) method. As the optimization problem associated with the ML
method lacks a known closed-form solution, an iterative search algo-
rithm has to be used. The standard choice seems to be the minimiza-
tion with respect to (w.r.t) A and B alternately, keeping the other
matrix fixed at the previous estimate. The algorithm performs well
in numerical studies [5]. However, it has the drawback of being iter-
ative and it does not allow for imposing a general linear structure on
theA andBmatrices in addition to the positive definiteness implied
by the problem formulation.

Another common approach is to simply calculate the (unstruc-
tured) sample covariance matrix of the data and then find the closest
(in the Frobenius norm sense) Kronecker structured approximation.
This approximation problem is treated in [7], [8], [2]. The corre-
sponding method lacks the asymptotical efficiency of the ML ap-
proach but has the advantage of simplicity and low computational
complexity. In this approach it is also possible to incorporate an ad-
ditional linear structure on theA andB matrices (as will be demon-
strated).

In this work we present a new method for the estimation of Kro-
necker structured covariance matrices based on a covariance match-
ing criterion (see Section 6). The method is non-iterative and has
a relatively low computational complexity. It is also shown to be
asymptotically efficient. Similar to the Kronecker approximation
method discussed above, it allows for linearly structured A and B
matrices.

In addition, we propose a non-iterative version of the method
mentioned above for ML estimation. The proposed method can be
seen as terminating the iteration after three steps. It is shown an-
alytically that the resulting estimate is asymptotically efficient, re-
gardless of initialization, and numerical simulations indicate a very
promising performance. However, the method has the drawback of
not allowing for imposing additional linear structure.

Furthermore, the CRB for the problem is derived in Section 5.
In the following,X† and |X| denote the Moore-Penrose pseudo-

inverse and determinant of the matrix X, respectively. The permu-
tation matrix Kx,y is defined such that Kx,yvec{X} = vec{XT }
if X is an x × y matrix. The notation X1/2 denotes a Hermitian
square-root of the matrix X. The i, jth element of the matrix X is
denoted [X]ij . The superscript ∗ denotes conjugate transpose and
T denotes transpose. Also Xc = XT∗. The notation Ẋj denotes
the element-wise derivative of the matrix X w.r.t. the parameter at
the jth position in the parameter vector in question. The notation
xN = op(aN) means that limN→∞ xN

aN
= 0 in probability. In this

work the asymptotic results hold when N tends to infinity.
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2. PROBLEM FORMULATION

Let x(t) be a zero-mean, complex Gaussian, circularly symmetric
random vector with Kronecker structured covariance matrix

E [x(k)x∗(l) ] = R0δ(k, l), R0 = A0 ⊗B0 (2)

where the m × m matrix A0 and the n × n matrix B0 are p.d.
(positive definite) Hermitian matrices. The problem considered is to
estimateR0 from the observed samples [x(t)]N−1

t=0 .
For later use, define the nA × 1−vector θA and the nB ×

1−vector θB as the real vectors necessary to parameterize A and
B, respectively. Furthermore, assume a linear structure:

vec{A} = PAθA, vec{B} = PBθB (3)

where PA and PB are data and parameter independent matrices
of size m2 × nA and n2 × nB respectively. If the only structure
imposed is that A and B are Hermitian matrices, then nA = m2

and nB = n2. Also introduce the concatenated parameter vector
θ = [θTA θTB]

T . Note that this parameterization is ambiguous since
A0α and B0α

−1 give the sameR0 for any α �= 0. Hence, A0 and
B0 can only be estimated up to a scalar factor.

3. MAXIMUM LIKELIHOOD ESTIMATION

The ML estimator for the above problem has been proposed in, e.g.,
[5]. The associated maximization problem has no known closed-
form solution. The negative log-likelihood function for the problem
is (excluding constant terms)

l(θA, θB) = m log |B|+ n log |A|+ tr{R̂ (A⊗B)−1} (4)

where

R̂ =
1

N

N−1�
t=0

x(t)x∗(t).

The last term of (4) can be rewritten as

tr{R̂ �
A−1 ⊗B−1

�} = tr{
m�
k=1

m�
l=1

R̂kl[A−1]lkB
−1}

where R̂kl is the k, lth block of size n × n in the matrix R̂. Using
a standard result on minimization of functions of the form (4) it is
clear that given a fixedA, theB minimizing (4) is given by

B̂(A) =
1

m

m�
k=1

m�
l=1

R̂kl[A−1]lk (5)

(see, e.g., [9]). It can be shown that B̂(A) is positive definite when
both A and R̂ are positive definite. Similarly, given a fixed B, the
minimizingA is

Â(B) =
1

n

n�
k=1

n�
l=1

R̄kl[B−1]lk (6)

where R̄kl is the k, lth m ×m block of R̄ = KT
m,nR̂Km,n. Fur-

thermore, Â(B) is p.d. when B and R̂ are p.d.. The so-called
flipflop algorithm [5] can be outlined as follows:

1. Select an initial estimateA = A0.
2. Set i:=0. Using (5), find theB0 = B̂(A0) that minimizes (4)

w.r.t. B givenA = A0.
3. Set i := i + 1. Using (6), find the Ai = Â(Bi−1) that

minimizes (4) given B = Bi−1.
4. Set i := i + 1. Using (5), find the Bi = B̂(Ai−1) that

minimizes (4) givenA = Ai−1.
5. Iterate steps 3 and 4 until convergence.

An interesting alternative to the above procedure is to perform steps
1 to 4 without iterating. See Section 4.

Note that it is unclear how to incorporate a general linear struc-
ture of the form (3) into the flipflop algorithm.

Clearly the ML estimate can be found using other search tech-
niques as well. Using either (5) or (6), the negative log-likelihood
function can be concentrated so that the search is over nA or nB
parameters, whichever is smallest. Based on numerical evidence, it
is our experience that the flipflop algorithm converges faster than a
Newton type search.

4. A NON-ITERATIVE FLIPFLOP APPROACH

The proposed estimate

R̂FF = Â(B̂(A
0))⊗ B̂(Â(B̂(A0))) (7)

is the result of steps 1-4 of the flipflop algorithm discussed above.
The initial estimate A0 is an arbitrary p.d. matrix (and need not be
data dependent). In the following it will be shown that R̂FF is an
asymptotically efficient estimate of the covariance matrix indepen-
dently of the initialization. In order to state the result, consider the
rearrangement function [7]

R(R) =
�
vec{R11} . . . vec{Rm1} . . . vec{Rmm}�T

where Rkl is the k, lth n × n block of R. It will also be useful
to introduce two other matrices that are obtained by rearranging the
elements of the sample covariance matrix. They are

R̂B =
�
vec{R̂11} . . . vec{R̂1m} . . . vec{R̂mm}

�
and

R̂A =
�
vec{R̄11} . . . vec{R̄1n} . . . vec{R̄nn}� .

Also introduce the corresponding permutation matrices that satisfy

vec{R̂A} = PRAvec{R̂}, vec{R̂B} = PRBvec{R̂},
vec{R̂} = PRvec{R(R̂)}.

We are now ready to state the result.

Theorem 1 Let R̂FF be the estimate of R0 given by (7). Then it
has an asymptotic covariance given by

lim
N→∞

NCov
�
vec{R̂FF }

�
= Ξ(RT

0 ⊗R0)Ξ
∗

where

Ξ =PR

�
1

n

�
vec{B0}vecT {B−1

0 } ⊗ Im2
�
PRA

+
1

m

�
In2 ⊗ vec{A0}vecT {A−1

0 }�Kn2,m2PRB

− 1

mn

�
vec{B0}vecT {A−T

0 }

⊗ vec{A0}vecT {B−1
0 }�Km2,n2PRA

	
. (8)

A proof is given in [10]. It is interesting to note that Ξ and the
expression for the asymptotic covariance do not depend on the initial
valueA0! A similar result can be shown for the ML method.

Theorem 2 Let R̂ML be the ML estimate of R0 in the model de-
fined in Section 2. Then

lim
N→∞

NCov
�
vec{R̂ML}

�
= Ξ(RT

0 ⊗R0)Ξ
∗

where Ξ is given by (8).

III  826



A proof is given in [10]. The somewhat surprising conclusion is
that the asymptotic (in N ) covariances of the ML estimate and the
estimate R̂FF coincide regardless of initialization A0! Numerical
studies in Section 7 also suggest very promising small sample per-
formance for R̂FF . Clearly this result together with the asymptotic
efficiency of ML give us an expression for the Cramér-Rao lower
bound for the problem in the special case when no linear structure
is imposed. A more general and compact expression that can take
linear structure into account is derived in Section 5.

5. THE CRAMÉR-RAO LOWER BOUND

In order to simplify derivations, note that

vec{A⊗B} = Pη, η = vec{θAθTB}.
where P = PR(PB ⊗PA). The i, jth element of the Fisher infor-
mation matrix (FIM) is given by [9]

[I(θ)]i,j = Ntr{R−1ṘiR
−1Ṙj}.

Construct a matrixΓ such that [Γ]j,i =
∂[η]j
∂[θ]i

which, when evaluated
at θ, reads

Γ = (θB ⊗ InA InB ⊗ θA) .
Since vec{Ṙj} = Pη̇j , this immediately gives an expression for
the FIM

I(θ) = NΓTP∗
�
R−T ⊗R−1

�
PΓ.

Some care must be exercised when using this result to find the CRB
for the elements of R. The reason is that the mapping between the
parameter vector θ and the matrix R is many-to-one due to the am-
biguous scaling ofA and B mentioned above and possibly also due
to the imposed linear structure. By using results proved in [11] we
have that the sought CRB is given byΔI†(θ0)Δ∗, where column i

ofΔ is given by ∂vec{R}
∂[θ]i

���
R=R0

. It is then straightforward to con-

clude thatΔ = PΓ0, where Γ0 is equal to Γ evaluated at θ = θ0.
and thus that

CRB =
1

N
PΓ0(Γ

T
0 P

∗
�
R−T

0 ⊗R−1
0

�
PΓ0)

†ΓT0 P
∗. (9)

6. A COVARIANCEMATCHING APPROACH

The CRB derived above can only be achieved by an estimator taking
the imposed linear structure [see (3)] into account. It is not obvious
how to incorporate such structure into the iterative and non-iterative
flipflop algorithms described above. This section aims at developing
a non-iterative algorithm that achieves the CRB also when a general
linear structure is assumed.

A simple standard approach to the present estimation problem is
to form the estimate ofR0 from the minimizers of

min
A,B

‖R̂−A⊗B‖F . (10)

This minimization problem can be rewritten as [7]

min
A,B

‖R(R̂)− vec{A}vecT {B}‖F (11)

where R(R̂) is the rearrangement function introduced in Section 4.
The reformulated minimization problem is a rank-one approxima-
tion problem that is easy to solve using the SVD. The resulting es-
timate is consistent since R̂ is consistent, but not asymptotically ef-
ficient. Incorporating a linear structure of the kind (3) can be done
similar to what is shown at the end of this section.

It will be shown that, in constrast to the minimizers of (10), the
estimate θ̂ obtained by minimizing

V (θ) = ‖R̂−A⊗B‖Q
= vec∗{R̂−A⊗B}Qvec{R̂−A⊗B} (12)

is asymptotically statistically efficient ifQ is chosen as

Q =
1

N

�
Cov

�
vec{R̂}

��−1

= RT
0 ⊗R0. (13)

This result is not surprising, especially in the light of the extended
invariance principle [12], [13]. Note that (13) depends on the un-
known parameters. ReplacingQ with a consistent estimate

Q̂ = Q+ op(1) (14)

does not affect the asymptotic efficiency (see Theorem 3 below). For
a general structured Q̂, the minimization problem (12) lacks a sim-
ple closed form solution and iterative methods similar to the flipflop
algorithm need to be used. Here, we will use a specially structuredQ
for which the minimization problem in (13) can be solved in closed
form. We suggest using the weighting matrix

Q̂ = (Â−1 ⊗ B̂−1)T ⊗ (Â−1 ⊗ B̂−1) (15)

where Â and B̂ are selected to be the closed form estimates given
by (10). This choice ensures positive definiteness of Q̂ when R̂ is
p.d., [7] and it also satisfies (14). With this choice of Q̂, the criterion
function in (12) can be written as

‖Ř− vec{Â−1/2AÂ−1/2}vecT {B̂−1/2BB̂−1/2}‖F (16)

where

Ř = R((Â−1/2 ⊗ B̂−1/2)R̂(Â−1/2 ⊗ B̂−1/2)).

Using (3) in (16) gives

‖R̂−A⊗B‖Q̂ = ‖Ř−QATAθAθTBTT
BQ

T
B‖F (17)

where QA and QB are orthonormal matrices and TB and TA are
invertible matrices such that

QATA = (Â
−T/2 ⊗ Â−1/2)PA,

QBTB = (B̂
−T/2 ⊗ B̂−1/2)PB.

The criterion in (17) can be rewritten as

‖R̂−A⊗B‖Q̂ = ‖Q∗
AŘQ

c
B −TAθAθTBTT

B‖F . (18)

The rank-one approximation problem in (18) is easily solved using
SVD. The proposed estimator has a fixed computational complex-
ity similar to that of the unweighted ad-hoc method, (10), and yet
it achieves asymptotical efficiency, as will be shown in Theorem 3.
The performance for finite sample sizes will be evaluated using sim-
ulations in Section 7.

One note is in place here. While the true covariance matrix is
known to be p.d., this restriction is not imposed on (18). However,
since the estimated covariance matrix is consistent, it will be p.d. for
large enough N . The conclusion is that the asymptotic performance
of the estimator is not affected by relaxing the positive definiteness
constraint. We conclude by stating:

Theorem 3 Let R̂C be an estimate ofR0 constructed as

R̂C = ÂC ⊗ B̂C

where ÂC and B̂C are minimizers of (12). Then

lim
N→∞

NCov
�
vec{R̂C}

�
=

1

N
PΓ0(Γ

T
0 P

∗
�
R−T

0 ⊗R−1
0

�
PΓ0)

†ΓT0P
∗. (19)

Furthermore, (19) still holds ifQ in (12) is replaced by Q̂ given in
(15).

A proof is given in [10]. The estimator is asymptotically efficient
since (19) coincides with (9).
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7. NUMERICAL STUDY

Monte Carlo simulations were used to evaluate small sample perfor-
mance of the proposed methods. Two Hermitian, p.d. matrices A0

and B0 were randomly generated (and then fixed) and R0 was cal-
culated. The fact that no additional structure was imposed allows all
methods to be used. In each Monte Carlo trial,N independent sam-
ples were generated from a complex Gaussian distribution with co-
varianceR0. Then each estimator was applied to the sample set and

the normalized root-MSE was calculated as
�

1
L

�L
k=1

‖R0−R̂k‖F
‖R0‖F

where R̂k is the estimate produced by the estimator in question in
Monte Carlo trial k and L is the number of Monte Carlo trials.

Five alternative estimators were tried: i) The unstructured sam-
ple covariance matrix, that does not utilize the known Kronecker
structure of the problem; ii) The unweighted approximation of the
sample covariance matrix by a Kronecker structured matrix [see (10)];
iii) The proposed method with the structured weighting matrix given
by (15); iv) TheMLmethod (implemented using the iterative flipflop
algorithm) and v) The proposed non-iterative flipflop method with
A0 = Im. The resulting normalized root-MSE as a function of the
sample size is shown in Figure 1. The matrix dimensions used were
m = n = 4. Our conclusion based on numerical evidence is that the
global minimum is found in general in the ML problem, also when
initialized far from the true value. A Newton search for the mini-
mum gave exactly the same results in all experiments, regardless of
initialization. For the non-iterative flipflop algorithm it was shown
in Section 4 that the initialization does not affect the asymptotical
results, but this does not rule out possible effects on performance for
finite sample sizes. It is thus interesting to note that, in this example,
the proposed non-iterative version of the flipflop algorithm performs
as well as the ML. The weighted approximation method proposed in
Section 6 performs worse than the ML based methods for the small-
est sample sizes, but approaches the CRB for large N . As expected,
the unweighted approximation method does not reach the CRB.
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Fig. 1. Normalized root-MSE as a function of sample size for differ-
ent alternative estimators. Simulations consisting of L = 100Monte
Carlo runs were used. The figure shows the results of an experiment
where A0 and B0 are Hermitian but otherwise unstructured. The
matrix dimensions werem = n = 4.

8. CONCLUSION

In this paper we have treated the problem of estimating the Kro-
necker structured covariance matrix from a set of N samples. Two
cases were considered:

The Kronecker factors, A0 and B0, are Hermitian and p.d. but
no other structure is assumed. It has previously been proposed that
the ML estimate can be computed by the iterative so-called flipflop
algorithm. In Section 4 we showed that a non-iterative algorithm
can be derived that is asymptotically efficient. In an example, the
proposed algorithm also showed small sample performance that is
fully comparable to ML.

The second case is more general since it allows for linear struc-
ture (as defined in Section 2) of the Kronecker factors. For this case
we suggested a method based on covariance matching. The proposed
method is non-iterative and asymptotically efficient.

In Section 5, we derived the CRB for the estimation problem.
Due to the asymptotical efficiency of the two proposed methods, the
CRB also gives their asymptotical covariance.
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