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ABSTRACT

We address the problem of optimal decomposition of Wavelet
Packets (WPs) for pattern recognition based on the minimum
probability of error signal representation (MPE-SR) principle.
The problem is formulated as a complexity regularized opti-
mization, where the tree-indexed structure of theWP family is
used to reduce it to a type of minimum cost tree pruning prob-
lem used in regression and classi cation trees (CART). MPE-
SR solutions are obtained for a frame level phone recognition
task showing promising performance results.

Index Terms— Signal representation for classi cation,
basis selection, complexity regularization, Wavelet packets,
minimum cost tree pruning.

1. INTRODUCTION

Optimal signal representation is a fundamental problem in
signal processing, and has been addressed from different con-
ceptual point of views and in multiple research areas. In the
context of pattern recognition, signal representation issues are
naturally associated with feature extraction (FE). In contrast
to compression and denoising scenarios, in recognition we are
looking for representations that capture an unobserved phe-
nomena that need to be inferred from the observed signal —
decision rule — where typically a criterion re ecting the av-
erage risk of taking the mentioned decision is optimized
In this direction, Vasconcelos [1] has recently formalized

theminimum probability of error signal representation (MPE-
SR) principle. Under certain conditions, [1] formalizes a trade-
off between the Bayes error bound (quality of the representa-
tion space) and an information theoretic indicator for the esti-
mation error across a sequence of embedded representations
of increasing dimensionality, and nally connects this result
with the notion of optimal signal representation for pattern
recognition. In [4] these results were extended for a more
general theoretical setting introducing the important notion
of family of consistent distributions associated to an embed-
ded sequence of representations. Furthermore [4] addresses
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the MPE-SR problem as the solution of an equivalent opera-
tional rate-distortion problem, motivated by a similar tradeoff
presented in the problem of lossy compression involving a -
delity criterion [5].
In this work we extend the rate-distortion optimality cri-

terion for the family of feature representations induced by the
lter-bank structure of the Wavelet packets (WPs). The so-
lution of this problem reduces to nding the minimum prob-
ability of error (MPE) lter bank decomposition for the ob-
servation phenomenon, which implicitly provides a way for
nding the optimal time-frequency or space-frequency reso-
lution for a given classi cation task. The rest of the paper
is organized as follows. We begin by introducing the fam-
ily of signal representations induced by the WPs and their
tree-indexed representation. Section 3 formally presents the
MPE-SR problem and how this problem can be addressed as
the solution of a minimum cost tree pruning problem. Finally
Section 4 presents experimental evaluation of MPE-SR solu-
tions in a frame level phone classi cation task.

2. TREE-INDEXED FILTER BANK
REPRESENTATION: WAVELET PACKETS

WPs allow decomposing the observation space into subspaces
associated with different frequency bands [2], which has been
shown to be an attractive analysis scheme for pseudo-stationary
time series phenomena, such as the acoustic speech process.
This bases family has a strong hierarchical tree-indexed struc-
ture induced by its lter bank implementation, that recursively
iterates a two channel orthonormal lter bank (high and low
frequency lters) to generate a family of orthonormal bases
for L2(R), the family of WPs [2].
Let X = R

Z be the raw sequence observation space, then
the application of the basic two channel lter bank is equiva-
lent to decomposingX into two subspacesX 1

0 andX 1
1 associ-

ated with two frequency bands of X . This process induces an
indexed-orthonormal basisB =

{
ψ1

0,k1, ψ
1
1,k2 : k1 ∈ A1

0, k2 ∈ A1
1

}
,

where we have that

X = X 1
0

⊕
X 1

1 , (1)

being X 1
i = span

{
ψ1

i,k : k ∈ A1
i

}
, i ∈ {0, 1}. Associ-
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ated with the subspace decomposition of the indexed basis
B, we consider a measurement phase applied in every sub-
space. This re ects the feature extraction part (for instance,
the subspace energy). In any of the subspaces, X 1

0 and X 1
1 ,

we can reapply the basic analysis block to generate a new in-
dex basis. By iterating this process, it is possible to construct
a tree-indexed collection of bases and their measurements for
X , see Fig. 1.B for notation. Consequently, there is a one-to-
one mapping between the family of rooted binary trees in a
certain graph G = (E, V ), Fig. 1.A, and the family of bases
induced by the WPs.
In this context, instead of representing the tree as a collec-

tion of arcs inG, we use the convention proposed by Breiman
et al. [3], where sub-graphs are represented just by subset
of nodes of the full graph. We consider a rooted binary tree
Tv0 = {v0, v1, ....} as collection of nodes rooted at v0. This
tree has only one node with degree 2, the root node, and the
rest with degree 3 and 1, for the internal node and leaf nodes,
respectively. We de ne L(T ) as the leafs of T and I(T ) the
internal nodes T . We say that a rooted binary tree S is a sub-
tree of T if S ⊂ T . In the previous de nition, if the root of
S and T are the same and L(S) �= L(T ), then S is a pruned
subtree of T , denoted by S � T . In addition if the root
of S is an internal node of T , and L(S) ⊂ L(T ), then S is
called a branch of T . In particular, we denote Tv the branch
of T rooted at v ∈ T . We de ne the size of the tree T as
the cardinality of L(T ), the number of terminal nodes, and
denote it by |T |. Finally any WP decomposition can be repre-
sented by the set of pruned binary trees ofTfull (the full tree),
{T ⊂ E : T � Tfull}, corresponding to the set of rooted bi-
nary trees in G rooted at vroot (the root of Tfull).
LetX(u) and Y (u) be the random observation vector and

the class random variable, respectively, de ned on the under-
lying probability space (Ω,F ,P)1 and with values on X and
Y , respectively. Applying the analysis-measurement toX(u)
for all WP decompositions, we induce a family of observation
representations {XT (u) ≡ mT (X(u)) : T � Tfull}2 taking
values in

{
(R|T |,B(R|T |)) : T � Tfull

}
. This will be the

family of lossy representations that will be considered as ob-
servation evidences in the classi cation problem. The next
section summarizes some results for addressing the problem
of optimal signal representation for classi cation for this par-
ticular family of tree-indexed feature representations.

3. MINIMUM PROBABILITY OF ERROR SIGNAL
REPRESENTATION (MPE-SR)

Let us considerDN = {(xi, yi) : i = 1, .., N} iid realizations
of (X(u), Y (u)) and the family of feature representations by
D = {XT (u) : T � Tfull} with their respective empirical
distributions estimated with DN . The minimum probability

1F and P denote the sigma eld and probability measure, respectively.
2mT (X(u)) represents the analysis-measurement process for T .

of error signal representation (MPE-SR) is given by [4]:

T∗ ≡ arg min
T�Tfull

E
(
I{u∈Ω:ĝT (XT (u)) �=Y (u)}(u)

)
, (2)

where ĝT (·) denotes the empirical Bayes decision rule —
from mT (X ) to Y — and the expected value is taken with
respect to the true underlying distribution P. Vasconcelos [1]
has shown that the probability of error of an empirical Bayes
decision rule, in Eq.(2), is affected by two sources of pertur-
bations. One, the Bayes error bound which is associated with
the intrinsic discrimination power of a given feature represen-
tation, and the other, the estimation error, which is the con-
sequence of using an empirical class-observation probability
measure for implementing the Bayes decision rule [1, 4].
Based on results originally presented in [1] and extended

in [4], Eq.(2) can be addressed as a complexity regularized
optimization problem with a delity indicator, mutual infor-
mation (MI) I(T ) ≡ I(XT (u), Y (u))3, re ecting the Bayes
error bound and a penalization, dimensionality of the feature
space, given by |T |, re ecting the estimation error [4],

T∗(λ) = arg min
T�Tfull

Ψ(I(T )) + λ · Φ(|T |). (3)

Considering the tendency of our delity-cost indicators, Ψ(·)
and Φ(·) should be a strictly decreasing and increasing func-
tions, respectively. The real dependency between the Bayes
error bound and estimation error in terms of our new delity
complexity values, I(T ) and |T |, is hidden and, furthermore,
problem dependent. As a result,Ψ, Φ and λ in Eq.(3) provide
degrees of freedom for approaching the solution of the MPE-
SR problem, presented in Eq.(2). However, independent of
those degrees of freedom, the MPE-SR solution T∗(λ) re-
sides in a sequence of representations

{
Tk∗ : k ∈ K(D)

}
,

which are the solution of the following type of rate-distortion
problem [4],

Tk∗ ≡ arg max
T�Tfull

|T |≤k

I (XT ;Y ) (4)

∀k ∈ K(D), with K(D) = {|T | : T � Tfull}. Finally, the
empirical risk minimization criterion using cross validation
can be adopted as the nal criterion for solving Eq.(2) 4.

3.1. Minimum Cost Tree Pruning Problem
Eq.(4) addresses the problem of nding the sub-band decom-
position of the observation space that maximizes the MI, con-
straining it to a speci c number of frequency bands. If we
do not have some additive property on the tree functional in-
volved, in particular I(T ), an exhaustive search needs to be
conducted for solving Eq.(4),which grows exponentially with
the size of the problem. For addressing this issue, let us char-
acterize the analysis-measurement process as a function of a

3Because of Fano’s Inequality [5].
4Equivalent to nding the optimal λ ∈ R

+ in Eq.(3) and consequently the
optimal k ∈ K(D) associated withTk∗ for solving the MPE-SR problem.
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Fig. 1. (A) Topology of the full rooted binary treeTfull and (B) representation of the tree indexed subspace with WP decomposition.

family of rvs. indexed by the full tree, Tfull. More pre-
cisely, mT (X)(u) = (X l

j(u))(l,j)∈L(T ), where X l
j(u) repre-

sents the lossy measurement associated with the subspace X l
j

induced by the WP family, see Fig. 1.B. We have proved that
I(T ) is an af ne tree functional [6]. In particular, considering
{vroot} � T � Tfull, a non-trivial tree, and T(l,j) as the
branch of T rooted at (l, j) ∈ I(T ), we can de ne ρT (l, j) ≡
I(mT(l,j)(X);Y |X l

j), where the following pseudo-additive
property holds [6]:
ρT (l, j) = Δρ(l, j)+ρT (l+1, 2j)+ρT (l+1, 2j+1), (5)

where Δρ(l, j) ≡ I
(
X l+1

2j , X l+1
2j+1;Y |X l

j

)
denotes the MI

gain of splitting the band (l, j) of a non-terminal node of T . In
Eq.(5), (l+1, 2j) and (l+1, 2j+1) represent the left and right
children of (l, j). Noting that ρT (l, j) = I(T(l,j))−I(X l

j ;Y )
∀(l, j) ∈ I(T ), we can generalize Eq.(4) by:

Tk∗
v ≡ arg max

T�Tfull

v∈T,|Tv|=k

I(Tv) = arg max
T�Tfull

v∈T,|Tv|=k

ρT (v), (6)

∀v ∈ I(Tfull), ∀k ∈ {
1, ..,

∣∣Tfullv

∣∣}. In Eq.(6) using
Eq.(5), we have a way for characterizing I(Tv) as an addi-
tive combination of a root dependent terms, ρT (·), evaluated
in its left and right branches. In fact, the following result, ex-
tended from the minimum cost tree pruning problem [7] for
additive tree functionals, can be stated as follows:

THEOREM 1 (Proof in [6]) Let v ∈ I(Tfull) and let us de-
note its left and right children by l(v) and r(v) respectively5.
Assuming that we know the solution Eq.(6) for the child nodes
l(v) and r(v)6, then the solution of Eq.(6) for v is given by:

Tk∗
v =

[
v,Tk̂1∗

l(v),T
k̂2∗
r(v)

]
, (7)

where 7

(k̂1, k̂2) = arg max
(k1,k2)∈{1,..,|Tfulll(v)|}×{1,..,|Tfullr(v)|}

k1+k2=k[
ρ
T

k1∗
l(v)

(l(v)) + ρ
T

k2∗
r(v)

(r(v))
]
, (8)

5From Fig. 1.A, l(v) = (l + 1, 2j) and r(v) = (l + 1, 2j + 1).
6We know

{
Tk1∗

l(v)
,Tk2∗

r(v)
: k1 = 1, ..,

∣∣∣Tfulll(v)

∣∣∣ k2 = 1, ..,
∣∣∣Tfullr(v)

∣∣∣}.
7[v, T1, T2] represents a rooted binary tree T with root v, Tl(v) = T1

and Tr(v) = T2.

∀k ∈ {
1, ..,

∣∣Tfullv

∣∣}. In particular, for vroot the solution
for the original optimal pruning problem, Eq.(4), is given by

Tk∗ =
[
vroot,Tk̂1∗

l(vroot)
,Tk̂2∗

r(vroot)

]
. (9)

This result shows a way to solve our optimal tree pruning
problem using a dynamic programing (DP) approach. This
DP solution is a direct consequence of solving the optimiza-
tion problem for the parent node as a function of the solutions
of the same problem for its direct descendants 8.

4. EXPERIMENTS

For evaluating the performance of the optimal lter bank de-
composition, we consider a simpli ed speech recognition sce-
nario, where lter banks have widely been used for feature
representations and furthermore concrete ideas for the opti-
mal frequency band decompositions are well understood based
on perceptual studies of the human auditory system9.
The corpus comprises about 1 hour 30 minutes of sponta-

neous conversational speech from a native American English
speaker. sampled at 16 Khz. The spoken content was human
segmented into utterances and transcribed at the word level.
Word level transcriptions were used for generating phone level
time segmentations on the acoustic signals by using auto-
matic force Viterbi alignment techniques. The standard frame
by frame analysis was performed on those acoustic signals,
where every 10ms (frame rate) a segment of the acoustic sig-
nal of 64ms around a time center position was extracted. Fi-
nally using the phone level time segmentations, the collection
of those acoustic frame vectors, dimension K = 1024, with
their corresponding phone class information (47 classes) was
created, where for purposes of this evaluation we considered
one segment of the data comprising N = 14979 supervised
sample points, DN .
We used this supervised data for addressing the problem

of optimal lter bank decomposition using Daubechies’ max-
imally at lter (db4) for the WP basis family [2], and the en-
ergy on the resulting bands as the measurements framework,
again motivated by standard feature representations used in
automatic speech recognition. We rst present some analy-
sis of the minimum cost tree pruning in terms of topology of

8The pseudo-code for implementing this solution is presented in [7, 6].
9e.g. mel frequency lter bank.
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Fig. 2. Graphical representation of the MI gain by splitting the basic
two channel lter bank across scale (level of decomposition, vertical
axes) and bands (horizontal axes) in the WP decomposition.

those solutions (the optimal lter bank decomposition prob-
lem) and then we evaluate performances associated with those
solutions.

4.1. Analysis of the MI Gain and Optimal Tree Pruning
Fig. 2 represents the MI gain across scale and frequency as a
consequence of iterating the basic two channel lter bank that
induces the WP basis family, ρT (l, j) in Eq.(5) (estimated
by a non-parametric density estimation approach [6]). The
global trend is expected in the sense that the iteration of lower
frequency bands provides more phone discrimination infor-
mation than the iteration on higher frequency bands across
almost all the scales of the analysis. This fact is consistent
with studies of the human auditory system showing that there
is higher discrimination for lower frequencies than higher fre-
quencies in the auditory range of 55Hz-15Khz. Based on this
trend the general solution of the optimal tree pruning prob-
lem follows the expected tendency, where for a given num-
ber of bands more level of decompositions are allocated in
lower frequency components of the acoustic signal (not re-
ported here for space considerations). In this respect, exact
Wavelet type of lter bank solutions (the type of lter bank
structure induced from human perceptual studies, MEL scale)
were obtained for solutions associated with small dimensions
but those start deviating from this scenario in the process of
exploring higher dimensional solutions.

4.2. Frame Level Phone Recognition
The solutions of the rate-distortion problem on the raw acous-
tic data were used as feature representations for purposes of
frame level phone recognition. In particular, we evaluated so-
lutions associated with the following dimensions: 4, 7, 10, 13,
19, 25, 31, 37, 43, 49, 55 and 61. A ten-fold cross validation
was used, using a non-parametric classi cation approach, K-
nearest neighbors (KNNs). As a reference, we consider the
standard 39Mel-Cepstrum (Mfccs) using same frame rate and
window length, where the correct phone classi cation rate ob-
tained was 68.71%. The performances of the rate-distortion
solutions, mean (standard deviation), obtained across dimen-
sions, d:, where:
d:4 29.07%(1.13); d:7 45.70%(1.07); d:10 53.89%(0.92);

d:13 59.35%(1.17); d:19 63.57%(1.30); d:25 65.85%(1.23);
d:31 67.41%(1.24); d:37 70.02%(1.15); d:43 71.75%(1.02);
d:49 72.80%(0.85); d:55 73.70%(0.91); d:61 74.24%(1.01).
Remarkably these results show that the rate-distortion so-

lutions provide a level of improvement with respect to Mfccs,
in particular considering the same number of dimensions. This
interesting scenario shows that the proposed pruning algo-
rithms present consistent solutions and competitive perfor-
mance values with well understood empirically motivated fea-
ture extraction techniques. While the proposed information
theory driven feature extraction offers promising phone recog-
nition results, a more systematic evaluation of speech recog-
nition experiments still remain to be done.
Furthermore, exploring solutions of the rate-distortion prob-

lem provides the exibility for nding the optimal operational
delity-complexity tradeoff for given classi cation scenario,
such as in terms of number of training points available for the
problem and the type of learning framework considered.

5. CONCLUSIONS AND FUTUREWORK
The solution for the minimum probability of error signal rep-
resentation (MPE-SR) for Wavelet packets (WPs) feature rep-
resentations is formally presented in this paper using a rate-
distortion optimality criterion. MPE-SR solutions show com-
petitive classi cation performances with respect to standard
feature extraction techniques for the frame level phone recog-
nition task. Furthermore, solutions for the rate-distortion prob-
lem re ects in considerable extent the expected frequency de-
composition in this scenario. Future efforts will be devoted to
extending the MPE-SR approach for the two dimensional WP
families, widely used in various image classi cation prob-
lems, and in exploring conceptual connection with related
tree-indexed optimization problem— decision trees and tree-
structured vector quantizations (TSVQ).
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