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ABSTRACT 

In this paper, statistical bounds on dual-frequency range 

estimations are provided. Single frequency (Doppler) radars  

cannot be used in range estimation due to their range ambiguities.  

An additional frequency can be used to increase the maximum 

unambiguous range to accepted values for indoor range estimation 

of moving targets. The dual-frequency approach offers the benefit 

of reduced complexity, fast computation time, and real time target 

tracking. Indoor inanimate objects such as fans, vibrating 

machineries, and clock pendulums exhibit simple harmonic 

motions, whereas animate translation movements are typically 

linear. We provide Cramer-Rao bounds for the parameters defining 

both types of motions and show their dependency on the 

observation period and partial knowledge of motion and noise 

parameters. 

    Index Terms—CW radar, Doppler radar, Random Noise. 

1. INTRODUCTION 

Urban sensing is an emerging area of research and 

development which requires rapid motion identification and 

builds on advances in high resolution imaging [1, 2]. 

Acoustics, ultrasound, and RF technologies can be used to 

provide target detection, location, and classification. 

Common constraints are imposed on all three technologies, 

namely, cost, weight, reliability, and user- friendly interface.  

 In this paper, we focus on Doppler radars for both 

target motion detection and ranging. Doppler radars meet 

operation constraints and can function well in highly 

cluttered indoor scenes. The bounds on target locations 

imposed by the room and building dimensions allow range 

estimation of moving targets using only two different 

frequencies. The dual-frequency approach has long been 

proposed for general radar applications [3, 4], but is likely to 

emerge as one of the leading approaches in urban sensing.  

In this paper, we develop Cramer Rao bounds for 

indoor moving target parameters using the dual frequency 

approach. We consider targets with linear and simple 

harmonic  motions (SHM).  For  both  cases, in  addition  to   

motion  speed  and  harmonic  frequency,  the  CRB  on   the  
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range estimate is also provided. 

2. RANGE AMBIGUITY 

Consider a CW radar having a single carrier frequency .f

The phase of the returns is range dependent, and is 

expressed as 
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where nR  is the range of the target for sample n . Since 

the phase is modulo 2 , then the maximum unambiguous 

range, denoted by uR , is expressed as 
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Typical radar applications involve large carrier frequencies 

in the MHz-GHz range; hence, the respective maximum 

unambiguous ranges are in a few centimeters, which are 

unacceptable values for target location estimation.  

However, consider a radar system employing two distinct 

carrier frequencies ,1f and 2f . The phase of the returns are 

given by, 
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Consider the difference in the unwrapped phase, expressed 

as,
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The maximum unambiguous range is obtained by letting the 

LHS of eq. (4) equal to 2 .
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From eq. (5), two frequencies of 1 GHz and 1.01 GHz can 

increase the maximum unambiguous range for 15cm to 

15m, which can be sufficient for target location in rooms 

and small buildings. It is noted that closer values of the two 

employed frequencies can lead to higher unambiguous 

range. However, coherent phase estimation can be 

compromised if the frequency difference is too small to 

overcome noise effects, large Doppler and micro-Doppler 

frequencies, and frequency drifts in down conversions. 
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3.  MODEL 

Consider a CW dual frequency radar employing two known 

carrier frequencies, 1f and 2f . The returns are range 

dependent and expressed as, 
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where, nR  is the range of target, which is a function of 

time, c is the speed of light in free space and  is the return 

signal amplitude. Z  is defined as the domain of positive 

integers. The noise over the observation period, N , is 

AWGN and uncorrelated, i.e,  
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where 
2
1 and 2

2  represent the noise variance for the two 

radars, respectively. For linear motion, the target is moving 

with a constant velocity, v , and the time-dependent range is  
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The target range for micro-Doppler (SHM) motion at 

sample n , is parameterized as [5] 
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where d , o , and o are the maximum displacement, 

micro-Doppler frequency and phase, respectively. In eqs. 

(10)-(11), the parameter, oR , is the initial target range.  

4. CRAMER RAO BOUNDS 

The received data from the radar forms long vectors,  
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The mean and covariance matrix of  x  are given by 
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Let the parameter vector be 
T

k...,, 321 . The 

Fisher information elements for independent identically 

distributed (i.i.d) complex Gaussian samples is given by [6] 
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where Re denotes the real part, F  is the fisher 

information matrix (FIM), and rT  is the trace operator. 

The Cramer Rao bounds (CRB’s) are the inverse of the 

fisher information, and appear on the diagonal of the 

inverted FIM. 
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Due to the diagonal assumption of the covariance matrix C,

the first term in eq. (17) is zero. Before we proceed with the 

derivations, we introduce certain parameters to make the 

CRB analysis more generic. 
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We evaluate the CRB’s as functions of the parameters 

defined in eq. (19) and the number of data samples, N .

4.1. Constant Doppler 

In this case the parameter vector is 
T

o vR .

Substituting eq. (10) for Doppler motion in eqs. (8)-(9), we 

obtain the signal returns. Now, using the signal returns for 

constant Doppler in eq. (17), we obtain the FIM. It can be 

readily shown that for a single Doppler frequency radar, 

employing carrier 1f , the FIM,
1f

F , and its inverse, is  
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where 
1

1 f
c , and 232K  a constant. However, for 

the proposed dual frequency radar the FIM is given by   
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It is clear from eq. (20) and eq. (22) that the Fisher 

information for the proposed dual frequency scheme can be 

written as, 

21 ff FFF                                                                  (24) 

The diagonal elements in eq. (23) represent the CRB’s for 

the target range and velocity under constant Doppler 

motion. It is evident from the multiplicative factor in eqs. 

(21) and (23) that the CRB’s for both the initial range and 

velocity for the dual frequency case consistently assume 

smaller values as compared to the single frequency 

operation.  

4.2 Micro-Doppler

In this case, the parameter vector is 

.
T

ooo dR  Substituting eq. (11) for micro-

Doppler motion in eqs. (8)-(9), we obtain the signal returns, 

which are in turn used in eq. (17) to compute the FIM. 
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In the above equation, it is noted that 

4,3,2,1, jiFF jiij . Hence, it is sufficient to derive 

the upper triangular elements only. We define 
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 , and proceed with the derivation.  
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To evaluate the CRB’s we employ the partitioned matrix 

inversion lemma, i.e. 
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Due to intractable expressions involved in the Fisher 

information elements, we numerically obtain the CRB’s for 

Micro-Doppler in the subsequent section. 

5. SIMULATIONS 

In this section, we evaluate the CRB’s for both linear and 

simple harmonic motions with respect to the data length N.

Fig. 1 shows the vCRB  vs. N for different values of the 

parameter .  The higher of the two SNR’s, corresponding 

to 1f  and 2f , is chosen to be 20dB. The corresponding 
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CRB for a single frequency radar, employing carrier 1f

with an SNR of 20dB, is also provided for comparison. We 

observe that the CRB for the dual frequency operation is the 

lowest for ,1  i.e. .dB2021 SNRSNR  For other 

values of ,  the dual-frequency CRB approaches the CRB 

for single frequency radar, operating at the frequency 

corresponding to the higher of .and 21 SNRSNR  We observe 

the same trend in Fig. 2, which shows the oRCRB  vs. data 

length N  for the same parameter values as in Fig. 1. It is 

obvious from the CRB’s that velocity estimates have lower 

variance than the range estimates. This implies that the data 

is more sensitive to changes in v than oR  [6]. Hence, some 

design for the order of joint estimation is therefore 

evidenced from the CRB’s.  

In Fig. 3, we show the CRB’s for micro-Doppler 

motion vs. the data length N  for 1  with 

.dB2021 SNRSNR  The oCRB  has the lowest 

variance amongst all parameters. dCRB  and oRCRB

are almost identical in terms of the variance values, whereas 

oCRB  has the maximum variance amongst all 

parameters. From our numerical computation, we observed 

that oCRB  is inversely proportional to 3N , whereas, the 

CRB’s for the rest of the Micro-Doppler parameters are 

inversely proportional to .N  Again, this implies that the 

data is most sensitive to parameter o  and least sensitive to 

parameter .o  Accordingly, the first parameter to be 

estimated should be o .

6. CONCLUSIONS 

In this paper, we have considered dual frequency radar for 

range estimation with application to urban sensing. CRBs 

were derived for range, velocity, and oscillatory frequency 

of targets encountering linear and simple harmonic motions. 

It is shown that the dual-frequency approach provides lower 

bounds as compared to the single frequency counterpart. 

Numerical computations of the CRB for MD motion, as a 

function of the observation period reveals that parameter 

o  has the lowest bound, whereas the parameter o   has 

the highest bound which implies a desirable order for 

parameter estimation, if they are performed independently. 
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Fig.1. CRB for velocity (constant Doppler motion).  

Fig.2. CRB for initial range (constant Doppler motion). 

Fig.3.  CRB’s for Micro-Doppler motion. 
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