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ABSTRACT

In this paper, a detailed performance analysis of the MUltiple Signal
Classi cation (MUSIC) algorithm for non-resolvable sources with
non-equal power is carried out. The signals considered consist of
clusters of sources, in which the directions of arrival (DOAs) of the
sources are close in each cluster. Only one of the source is of interest,
while the others are treated as interferences. In this scenario, the
estimation accuracy is in uenced by both the nite sample effect
and the perturbation caused by the interferences, the latter of which
is the focus of this paper. By using the rst order of the Taylor series
expansion of the perturbation caused by the interferences, the bias of
the DOAs are derived in a closed form. It is shown that if the closely
spaced signals exist, the MUSIC algorithm become biased, and the
bias depends on their power and the distance between their DOAs.
Simulation results are also conducted to verify the derived analytic
expressions.

Index Terms— MUSIC, DOA estimation, Error analysis, An-
tenna arrays

1. INTRODUCTION

The DOA estimation of the sources impinging on the arrays has been
one of the central problems in statistical signal processing over the
past few decades [1]. The subspace based algorithms, most notably
the MUSIC [2], which makes full use of the characteristics of the
data model to render high-resolution estimates, strike a good bal-
ance between the computational complexity and performance, and
has been in particular of great research interest.

To get further insight into the MUSIC algorithm, the statistical
analysis of which has received considerable attention. For example,
Stoica et al derived the performance of the MUSIC in a closed form
and analyzed its statistical ef ciency [3]. It is observed in [3] that the
Mean Square Error (MSE) is proportional to the inverse of the Signal
to noise ratio (SNR), and that the MUSIC algorithm is a unbiased
estimator. However, if there are closely spaced sources, which are
not resolvable by the MUSIC algorithm, in the observed data such as
the local scattering [4], the estimated value will approach the average
of the true parameters of the sources [5, 6] and the MUSIC algorithm
yields a biased estimator and thus the analysis in [3] is no longer
applicable. For this, Xu et al [7] exploited the second order Taylor
series expression of the derivative of the null spectrum to establish
a rigorous bias analysis of the MUSIC location estimator. However,
when SNR is below the resolution threshold of the MUSIC, their
analytical results are not applicable.
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In this paper, a detailed error analysis of the MUSIC algorithm
for non-resolvable sources with non-equal power is carried out. The
signals considered consist of clusters of sources, in which the di-
rections of arrival (DOAs) of the sources are close in each cluster.
Only one of the source is of interest, while the others are treated as
interferences which perturb the estimation accuracy of the desired
source. The analysis of the nite sample effect has been well studied
in the literatures, say [8]-[10], and in this paper we simply modify
the derivations given in [3]. As for the analysis of the perturbation
effect, by using the rst order of the Taylor series expansion of the
perturbation caused by the interferences, the bias of the DOA esti-
mates is derived in a closed form. It is shown that the MUSIC algo-
rithm is an unbiased estimator when the DOAs are well separated.
However, if there are some closely spaced sources, the MUSIC be-
comes biased, and the bias depends on their power and the distance
between their DOAs. Compared with previous works, the devel-
oped expressions are applicable to much more general scenarios and
their mutual relationships are also highlighted. Simulation results
are conducted to verify the derived analytic expressions.

2. STATEMENT OF THE PROBLEM

Assume that K clusters of sources impinge on the array with P an-
tennas (K < P ) and the numbers of the uncorrelated narrow band
sources in each cluster are Li, i = 1, ..., K . Let θi,j be the DOA of
the jth source in the ith cluster, then observed signal at the antenna
array, x(t), can be expressed as

x(t) =

K∑
i=1

Li∑
j=1

a(θi,j)si,j(t) + n(t) (1)

where si,j(t) is the transmitted signal and a(θi,j)=[e−j2πφ1(θi,j)

,. . .,e−j2πφP (θi,j)]T denotes the steering vector of the jth source in
the ith cluster, in which φk(θi,j) is determined by the array geomet-
ric patterns and (·)T denotes the transposition. n(t) is the additive
white Gaussian noise with zero mean and variances σ2n.

Based on (1), the covariance matrix,R Δ
= E[x(t)xH(t)], where

(·)H denotes the Hermitain operation, can be expressed as

R =

K∑
i=1

Li∑
j=1

σ2i,ja(θi,j)a
H(θi,j) + σ2nI (2)

where σ2i,j = E[si,j(t)s
∗
i,j(t)] is the power of the signal si,j(t)with

(·)∗ being the complex conjugation operation.
Without loss of generality, the discussion to follow will focus on

the estimation accuracy of source 1 in the ith cluster, i = 1, . . . , K ,
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while treating other sources as interferences. The analysis can be
readily extended to other sources as well. Since the DOAs of the
sources in the same clusters are close (θi,1 ≈ θi,2 ≈ · · · ≈ θi,Li , i =
1, ..., K), using the Taylor series expansion a(θi,j) ≈ a(θi,1) +

Δθi,jd(θi,1), in whichΔθi,j = θi,j−θi,1 andd(θi,1) =
da(θ)

dθ
|θ=θi,1 ,

we have

a(θi,j)a
H(θi,j) ≈ a(θi,1)a

H(θi,1) + Δθi,jEi,

i = 1, ..., K, j = 2, ..., Li (3)

where the second-order term ofΔθi,j has been neglected and

Ei = a(θi,1)d
H(θi,1) + d(θi,1)a

H(θi,1) (4)

By substituting (3) into (1), the covariance matrixR can be rewritten
as

R =

K∑
i=1

σ2i a(θi,1)a
H(θi,1) +

K∑
i=1

εiEi + σ2nI

= A1B1A
H
1 +E+ σ2nI (5)

where A1 = [a(θ1,1), ..., a(θK,1)], B1 = diag{σ21 , ..., σ2K}, E =∑K

i=1
εiEi, in which

σ2i =

Li∑
j=1

σ2i,j and εi =

Li∑
j=2

σ2i,jΔθi,j (6)

Since Δθi,j is very small, σ2i � εi. Therefore, Ei and εi can be
regarded as a perturbation matrix and power, respectively. Eq. (5)
implies that the signal subspace of R is spanned by K desired sig-
nals but perturbed by Ei with the perturbation power depending on
the power of the interferences and the distance between the DOAs of
the desired source and interferences.

Let λ1 ≥ λ2 ≥ · · · ≥ λP and v1, ...,vP denote the eigenval-
ues and the associated eigenvectors ofR. Since there areK sources
in the received data, we can obtain that λi > σ2n for i = 1, ..., K
and λi ≈ σ2n for i = K + 1, ..., P . Also, the signal and noise
subspaces of R are spanned by Vs = {v1, ...,vK} and Vn =
{vK+1, ...,vP }, respectively. Furthermore, the steering vectors,
a(θi,1), i = 1, ..., K , lie on the signal subspace, so those steering
vectors and the noise subspace are orthogonal.

In practice,R is unknown and can be estimated by

R̂ =
1

N

N∑
t=1

x(t)xH(t) (7)

where N is the number of snapshots. By taking the eigendecompo-
sition of R̂ renders

R̂ = V̂sΛ̂sV̂
H
s + V̂nΛ̂nV̂

H
n (8)

where the column vectors of V̂s and V̂n are respectively the eigen-
vectors which span the signal subspace and the noise subspace of
R̂ with the associated eigenvalues on the diagonals of Λ̂s and Λ̂n.
Furthermore, the pseudospectrum of the MUSIC algorithm can be
de ned as

f(θ) = aH(θ)
(
I− V̂sV̂

H
s

)
a(θ) (9)

The estimates of θi,1 are obtained by selecting the minima of f(θ)
[2].

3. PERFORMANCE ANALYSIS

Based on the estimated covariance matrix, R̂ given in (7), we con-
sider the errors of the DOA estimates caused by the nite sample
effect and the perturbation of the interferences. We refer to the for-
mer asΔθn,i,1 and the latter asΔθr,i,1.

First, we consider the errors of the DOA estimates caused by
the nite sample effect. By neglecting the perturbation (the second
term in (5)), the MUSIC estimation errors,Δθn,i,1, is asymptotically
Gaussian distributed with zero mean (E[Δθn,i,1] = 0) and variance
given by [3]

E[(Δθn,i,1)
2] ≈ 1

2N · SNRi

[
1 +

(AH
1 A1)

−1
i,i

SNRi

]
/h(θi,1)

i = 1, ..., K (10)

where (.)i,i denotes the (i, i)th element of the embraced matrix,
SNRi = σ2i /σ2n, and

h(θi,1) = d
H(θi,1)[I−A1(AH

1 A1)
−1AH

1 ]d(θi,1) (11)

Since θi,1
′s are well separated, |aH

i,1aj,1| � P, i, j = 1, ..., K .
Hence, the determinant of AH

1 A1 and the cofactor of the (i, i)th
element of AH

1 A1 are approximately equal to P K and P K−1, re-
spectively. Therefore, (AH

1 A1)
−1
i,i ≈ 1/P and E[(Δθn,i,1)

2] can
be simpli ed as

E[(Δθn,i,1)
2] ≈ 1

2N · SNRi

[
1 +

1

P · SNRi

]
/h(θi,1) (12)

Next, we derive the errors of the DOA estimates caused by the
perturbation of the interferences, Δθr,i,1. Taking the eigendecom-
position ofA1B1AH

1 given in (5) renders

A1B1A
H
1 =

[
Vss,1 Vsn,1

] [
Λss,1 0
0 0

][
VH

ss,1

VH
sn,1

]
(13)

where the column space of Vss,1 = [vss,1, ...,vss,K ] is the sig-
nal subspace of A1B1AH

1 , the column space of Vsn,1 = [vsn,1,
...,vsn,(P−K)] is the orthogonal complement ofVss,1, andΛss,1 =
diag{λ̄1, ..., λ̄K} is composed of the eigenvalues corresponding to
vss,1, ...,vss,K , respectively. If the perturbation E is taken into ac-
count, we denote the perturbedVss,1 byVss,1(E) = [vss,1(E), ...,
vss,K(E)]. After taking the Taylor series expansion of each column
of Vss,i(E) and neglecting the higher-order terms, we can obtain
[11]

vss,i(E) ≈ vss,i +
( K∑

j=1,j �=i

αi,jvss,j +

P−K∑
k=1

βi,kvsn,k

)
(14)

for i = 1, ..., K , where

αi,j =
vH

ss,jEvss,i

λ̄i − λ̄j

and βi,k =
vH
sn,kEvss,i

λ̄i

(15)

By substituting (4) into (15), βi,k can be re-expressed as

βi,k =
vH

sn,k

∑K

j=1
εjd(θj,1)a

H(θj,1)vss,i

λ̄i

(16)

where we have used the fact that vH
sn,ka(θj,1) = 0.

We can note from (5) that the perturbation power εi depends on
the distance between θi,1 and θi,j , j = 2, ..., Li and the power of
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the interferences, σ2i,j , j = 2, ..., Li. Hence, the closer the DOAs of
the desired source and the interferences, the smaller the perturbation
power. WhenΔθi,j equals zero (θi,1 = θi,j), the perturbation power
εi becomes zero, and then the DOA estimation of the desired source
will not be in uenced by the interferences.

Also, taking the derivative of (9) and setting it to zero yields

2Re
{
aH(θ̂i,1)

(
I−Vss,1(E)V

H
ss,1(E)

)
d(θ̂i,1)

}
= 0 (17)

Using the Taylor series expansion a(θ̂i,1) = a(θi,1)+Δθr,i,1d(θi,1)

and the approximation that d(θ̂i,1) ≈ d(θi,1) [3], we can obtain
from (17) that

Δθr,i,1 ≈ −Re
{
a(θi,1)

H
(
I−Vss,1(E)V

H
ss,1(E)

)
d(θi,1)

}
dH(θi,1)

(
I−Vss,1(E)VH

ss,1(E)
)
d(θi,1)

≈ −Re
{
a(θi,1)

H
(
I−Vss,1(E)V

H
ss,1(E)

)
d(θi,1)

}
h(θi,1)

i = 1, ..., K (18)

where h(θi,1) is given in (11) and we have used the fact that I −
Vss,1(E)V

H
ss,1(E) ≈ I−A1(AH

1 A1)
−1AH

1 .
Based on the fact that a(θi,1) and vsn,k are orthogonal, by sub-

stituting (14) into (18) and after some manipulations Δθr,i,1 can be
expressed as

Δθr,i,1 =
Re

{
aH(θi,1)

(∑K

j=1

∑P−K

k=1
βH

j,kvss,jv
H
sn,k

)
d(θi,1)

}
h(θi,1)

(19)
By substituting βj,k given in (16) into (19), (19) can be reduced to

Δθr,i,1 =

∑K

j=1
εjμi,jνi,j

h(θi,1)
(20)

where
μi,j

Δ
= aH(θi,1)Vss,1Λ

−1
ss,1V

H
ss,1a(θj,1) (21)

and
νi,j

Δ
= dH(θj,1)[I−A1(AH

1 A1)
−1AH

1 ]d(θi,1) (22)
Based on the fact that (AH

1 Vss,1)Λ
−1
ss,1(V

H
ss,1A1) = B−1

1 [1],
whereB1 is as given in (5), μi,j becomes

μi,j ≈
{
(σ2i )

−1 , i = j

0 , i �= j
(23)

By substituting (23) into (20), (20) can be re-written as

Δθr,i,1 =
εi

σ2i
(24)

Finally, by substituting (6) into (24),Δθr,i,1 can be re-expressed as

Δθr,i,1 =

∑Li

j=2
Δθi,jσ

2
i,j∑Li

j=1
σ2i,j

(25)

Summarizing the above, we have the following proposition:
Proposition :

The DOA estimates of the MUSIC for closely spaced signals are
biased, and their bias and MSE are given, respectively, by

BIAS(θ̂i,1) ≈
∑Li

j=2
Δθi,jσ

2
i,j∑Li

j=1
σ2i,j

, i = 1, . . . , K (26)

and MSE(θ̂i,1) ≈ 1

2N · SNRi

[
1 +

1

P · SNRi

]
/h(θi,1)

+
(∑Li

j=2
Δθi,jσ

2
i,j∑Li

j=1
σ2i,j

)2
, i = 1, . . . , K (27)

where N , P , and Li are the numbers of the snapshots, the antennas,
and the source(s) in the ith cluster, respectively, SNRi is the ratio
of the total signal power in the ith cluster to noise power, Δθi,j is
the distance between the DOAs of the desired source and the jth

interference in the ith cluster, and σ2i,j is the power of the jth source
in the ith cluster.

Based on the above, we have the following observations:
1) If there is only one source in each cluster, the bias caused by the
perturbation is negligible, and the estimator is unbiased and Eq. (27)
is reduced to Eq. (7.7a) in [3].
2) If there is more than one source in the cluster, the estimator will
become biased. We can note from (26) that the bias of the DOA esti-
mate of the desired source only depend on the perturbation caused by
the interferences in the same cluster, but is independent of those in
the other clusters. Furthermore, the bias is proportional to the inverse
of the total power of the sources in the same cluster, the product of
the power of the interferences, and the distance between the DOAs
of the desired source and the interference, as shown in (26). Also,
we can note from (26) that the bias is independent of the number of
the antennas P . In the equal-power scenario, the bias is reduced to

BIAS(θ̂i,1) ≈ Li − 1
Li

Li∑
j=2

Δθi,j (28)

which implies that the bias increases as Li increases, and is propor-
tional to the summation of the distance between the DOAs of the
desired source and the interferences. In particular, if there are two
close sources (Li = 2), the bias is equal to half of their distance,
which is consistent with the observation in [5, 6].
3)We can note from (27) that the MSE caused by the nite samples,
E[(Δθn,i,1)

2], is proportional to both the inverse of the number of
snapshots N and the SNR1. In contrast, the MSE caused by the
perturbation, E[(Δθr,i,1)

2] is independent of the number of snap-
shots N and the SNR1. Therefore, E[(Δθn,i,1)

2] can be neglected
in high-SNR or large-M scenarios.

4. SIMULATIONS AND DISCUSSION

Simulations are conducted in this section to verify the derived an-
alytic expressions. Assume that there are three clusters of sources
with rst cluster consisting of two sources, the second cluster three
sources, and the third cluster one source. The impinging signals are
received by a six-element uniform linear array which spaced a half
wavelength apart. The DOAs of the rst cluster are [10, 10 + Δθ]o,
those of the second cluster is [40, 41, 42]o, and that of the third
cluster is 80o, where Δθ = 0.2, 0.4, 0.6, 0.8. The average power
of all sources is equal. 32 snapshots are employed to estimate the
covariance matrix. For each speci c SNR, 200 Monte Carlo trials
are carried out. For a clear illustration, only the bias and root-MSE
(RMSE) of the DOA estimates of the rst source in the rst cluster
are provided, as shown in Figs. 1 and 2, respectively.

We can note from Fig. 1 that the bias of the DOA estimates
equals half of theΔθ in high-SNR scenarios, but is irregular in low-
SNR scenarios, as the noise is more pronounced then. Also, we
can note from Fig. 2 that the RMSE is proportional to the inverse
of the SNR and matches the theoretical value derived above and in
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[3], which decreases as the SNR increases in low-SNR scenarios.
Also, the RMSE approach a constant and equal the theoretical value
desired above in high-SNR scenarios. This is due to the fact that the
rst term in (27), which is caused by the additive noise, is larger than
the second term, which is caused by the perturbation, in low-SNR
scenarios. However, the rst term decreases as SNR increases, while
the second term remains to be constant for all SNRs. Therefore,
the second term in (27) can be neglected in low-SNR, but not so in
high-SNR scenarios. The expressions developed in [3] only account
for the rst term in (27) and thus are not applicable in high-SNR
scenarios, as shown in Fig. 2.

Finally, we consider a non-equal power scenario, which has the
same settings as the above except that Δθ = 1 and the power ratio
of the sources 2 to 1 in the rst cluster is varied from 0 to 1. Figs.
3 compares the bias of the DOA estimates by simulations and the
analytic expressions with SNR=10 dB. We can observe from Fig. 3
that the bias increases as the power of source 2 increases. When the
power of source 2 equals that of source 1, the bias will be equal to
half of the distance between the DOAs of sources 1 and 2, which is
consistent with (28).
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Fig. 1. Comparison of the bias of the DOA estimates based on sim-
ulation and theoretical values of (26).
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