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ABSTRACT

This paper aims at characterizing the (mean) speed of conver-
gence of the EM algorithm. We derive, under some simplify-
ing assumptions, a relation between the EM algorithm mean
convergence rate (MCR) and Cramer-Rao bounds (CRBs) as-
sociated to the so-called incomplete and complete data sets
de ned within the EM algorithm framework. We illustrate
our derivations in the case of carrier-phase estimation based
on the EM algorithm. As far as our simulation setups are
concerned, we show that the (mean) EM-algorithm behavior
may be well predicted by means of the proposed CRB-based
expression.

Index Terms— Convergence of numerical methods, Max-
imum likelihood estimation

1. INTRODUCTION

The Expectation-Maximization (EM) algorithm is an iterative
methodology for solving maximum-likelihood (ML) problems.
Since its rst statement by Dempster, Laird and Rubin [1],
much literature has been devoted to the study of its behav-
ior and convergence properties, see e.g. [2] and references
therein.

The speed of convergence is often considered as the main
drawback of the EM algorithm because very low in some
cases. Dempster, Laird and Rubin [1] showed that the con-
vergence of the EM algorithm is generally linear, with a rate
of convergence obtained from the information matrices asso-
ciated to the missing and complete data sets. More recently,
some authors [3, 4] have given further insights into the EM-
algorithm convergence. In particular, in [3, 4] the authors
emphasize that the EM algorithm may locally achieve quasi-
Newton behavior in some speci c situations. Although these
contributions gives an exact mathematical formulation of the
local convergence of the EM algorithm, they do not necessar-
ily enable to easily predict its behavior as a function of the
parameters of the problem at hand.

In this contribution, we address this problem. More specif-
ically, we derive an expression relating, under some simplify-
ing assumptions, the EM-algorithm mean convergence rate

(MCR) to the Cramer-Rao bounds [5] associated to the in-
complete and complete data estimation problems [1]. Tak-
ing bene t from the numerous contributions dedicated to the
study of the CRBs, we will emphasize that the proposed MCR
expression enables to easily predict the EM algorithm speed
of convergence as a function of the system parameters.

2. ML ESTIMATION AND EM ALGORITHM

Let r denote a vector of observations depending on an un-
known scalar parameter b. The maximum-likelihood (ML)
estimate of b is de ned as the solution of the following maxi-
mization problem

b̂ML = argmax
b̃

p(r|b̃), (1)

where b̃ is a trial value of b. The EM algorithm, rst de ned
by Dempster, Laird and Rubin in [1], is a powerful iterative
methodology to deal with ML problem. Formally, the EM
algorithm is based on the following two steps:

E-step: Q(b̃, b̂(n)) =

∫
Z

p(z|r, b̂(n)) log p(z|b̃) dz, (2)

M-step: b̂(n+1) = argmax
b̃

Q(b̃, b̂(n)), (3)

where b̂(n) is the estimate computed by the EM algorithm at
iteration n and r = f(z), where f(z) is a many-to-one map-
ping. Vectors r and z are often referred to as the incomplete
and the complete data set, respectively.

Talking about iterative processing, the question naturally
arises of the speed of convergence of the EM algorithm. Demp-
ster, Laird and Rubin showed in their seminal paper [1] that
the convergence of the EM algorithm is usually linear i.e. we
have in a neighborhood of b̂ML that

e(n+1) = C(r) e(n), (4)

where e(n) = ‖ b̂(n) − b̂ML‖ and C(r) is the rate of conver-
gence of the EM algorithm. The authors showed moreover
that the rate of convergence is related to the amount of miss-
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ing information 1 in the considered problem i.e.

C(r) = I−1c (r) Im(r) (5)

where Ic(r) and Im(r) are respectively the information ma-
trices associated to the complete and the missing data i.e.,

Ic(r) � −

(∫
Z

p(z|r, b̃)
∂2

∂b̃2
log p(z|b̃) dz

)
∣∣b̃=b̂ML (6)

Im(r) � −

(∫
Z

p(z|r, b̃)
∂2

∂b̃2
log p(z|r, b̃) dz

)
∣∣b̃=b̂ML .

(7)

3. A CRB-BASED EXPRESSION OF THE EM MEAN
CONVERGENCE RATE

In this section, we derive an approximated expression of the
mean convergence rate (MCR) of the EM algorithm. We de-
ne the MCR, say MC , as the coef cient relating the mean

distances E
r|b[e

(n+1)] at two successive iterations i.e.,

E
r|b[e

(n+1)] = MC E
r|b[e

(n)], (8)

where E
r|b[·] denotes the expectation with respect to p(r|b).

In the sequel, considering simplifying assumptions, the MCR
will be shown to be related to the CRBs associated to the in-
complete and complete data set.

Our derivations are based on the following two assump-
tions:

1. We assume that ∀ ε > 0, we have

Pr {‖Im(r) − K1‖ < ε} � 1, (9)

Pr {‖Ic(r) − K2‖ < ε} � 1, (10)

where K1 and K2 are two constants. In words, assump-
tion (9) (resp. (10)) means that the probability of ob-
serving a vector r such that Im(r) (resp. Ic(r)) is ε-
close to some value K1 (resp. K2) is almost equal to
1.

2. We assume that the ML estimate b̂ML is close to the
actual parameter value b, i.e., b̂ML � b.

At rst sight, assumption 1 and 2 may appear quite re-
strictive. However, they are reasonable in many practical sce-
narios as a direct consequence of the law of large numbers
(assumption 1) and the ML asymptotic ef ciency (assump-
tion 2) [5], respectively. For example, in digital communi-
cation problems the size of observation vector r is typically
large (roughly between 100 and 10000) and the observations

1The missing information may actually be seen as the difference between
the amount of information contained in the (so-called) complete data set and
the incomplete data set.

are only locally correlated. In such a situation, assumption 1
is often reasonable as a consequence of the law of large num-
bers. Moreover, the system reliability requires a good preci-
sion on the estimated parameters, and therefore assumption 2
is usually also satis ed.

Based on assumptions 1 and 2, we now derive an expres-
sion relating the EM-algorithm MRC to the CRBs associated
to the complete and the incomplete data sets. Starting from
(4) and taking the expectation of both sides with respect to
p(r|b), we have∫
R

p(r|b) e(n+1) dr =

∫
R

p(r|b) C(r) e(n) dr (11)

�

∫
R

p(r|b) Im(r) dr∫
R

p(r|b) Ic(r) dr

∫
R

p(r|b) e(n) dr,

(12)

since by assumption 1, matrices Im(r) and Ic(r) are equal to
some constants with probability (almost) one. From (12), it
immediately follows that

MC �

∫
R

p(r|b) Im(r) dr∫
R

p(r|b) Ic(r) dr
. (13)

Based on assumption 2, we will now show that (13) may also
be expressed as

MC � 1 −
CRBz(b)

CRBr(b)
, (14)

where CRBr(b) and CRBz(b) are the CRBs associated to the
incomplete data set r and the complete data set z, respectively.
In order to show (14), we will show that

E
r|b

[
Ic(r)

]
� CRB−1

z
, (15)

E
r|b

[
Im(r)

]
� CRB−1

z
(b) − CRB−1

r
(b). (16)

Let us rst show (15). Using the de nition of the complete-
data information matrix (6) and taking the expectation with
respect to p(r|b), we have

E
r|b

[
Ic(r)

]
= −

∫
R

p(r|b)

∫
Z

p(z|r, b̃)

×
∂2

∂b̃2
log p(z|b̃) dz dr|b̃=b̂ML (17)

Using assumption 2, i.e., b̂ML � b, and the Bayes rule we
have

E
r|b

[
Ic(r)

]
� −

∫
R

∫
Z

p(z, r|b̃)
∂2

∂b̃2
log p(z|b̃) dz dr|b̃=b

= −

∫
Z

p(z|b̃)
∂2

∂b̃2
log p(z|b̃) dz|b̃=b. (18)
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Now, taking the de nition of the CRB into account, i.e.

CRBz(b) = −

(
E
z|b

[
∂2

∂ b̃2
log p(z|b̃)

]
∣∣ b̃=b

)−1
, (19)

we end up with (15).
Let us now consider (16). First notice that Im(r) and

Ic(r) may be related [2] as

−

(
∂

∂b̃2
log p(r|b̃)

)
∣∣b̃=b̂ML = Ic(r) − Im(r). (20)

Based on (20), we may write

E
r|b

[
Im(r)

]
= E

r|b

[
Ic(r) +

(
∂

∂b̃2
log p(r|b̃)

)
∣∣b̃=b̂ML

]
.

(21)

Using assumption 2, we nally have

E
r|b�
[
Im(r)

]
= CRB−1

z
(b) + E

r|b

[(
∂

∂b̃2
log p(r|b̃)

)
∣∣b̃=b

]
,

(22)

= CRB−1
z

(b) − CRB−1
r

(b), (23)

where (22) follows from (15), and (23) follows from the de -
nition of the CRB (19). This shows (16).

As far as our building assumptions are valid, (12) and (14)
establish a relationship between the rate of improvement of
E
r|b[‖b

(n) − b̂ML‖] and the CRBs associated to the complete
and incomplete data sets. In particular, we see from (14) that
the (mean) rate at which the EM algorithm converges to the
ML estimate decreases a function of the ratio CRBz/CRBr.
This ratio is actually a measure of the improvement of the
estimation quality which can be achieved by observing the
complete-data set instead of the incomplete-data set. Since
the behavior of the CRBs associated to many estimation prob-
lems have already been extensively studied in the literature,
(14) provides an easy way to predict what will be the EM-
algorithm behavior by simply looking at the CRB one. This
approach will be illustrated in section 4.

4. A PRACTICAL EXAMPLE: EM-BASED
ITERATIVE CARRIER PHASE SYNCHRONIZATION

In this section, we illustrate our derivations in the practical
case of iterative carrier-phase synchronization of a digital re-
ceiver. The model of the received observations is as follows:

r = a ejθ + v, (24)

where a is a vector of data symbols, θ is the carrier-phase
offset and v is a vector of zero-mean white Gaussian noise
with complex variance σ2

v . The EM algorithm is applied to the
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Fig. 1. Cramer-Rao bounds versus Es/N0-ratio for uncoded trans-
mission with different constellation sizes.

problem of computing the ML estimate of the carrier phase
offset. Following the approach proposed in [6], the complete
data set is de ned as z � [rT ,aT ]T .

Note that the behavior of the CRBs associated to carrier-
phase estimation have been extensively studied in the litera-
ture, see e.g. [7] and references therein. Taking bene t from
this knowledge, we will show that the EM algorithm con-
vergence may be well-predicted via (14). As illustrative ex-
amples, we will consider the EM-algorithm sensitivity to the
symbol-constellation size and the SNR. In each scenario, the
EM-algorithm performance computed via Monte-Carlo sim-
ulations will be compared to the one predicted by means of
(14).

Let us rst investigate the EM-algorithm behavior when
the size of the symbol constellation alphabet varies. We con-
sider the following setup. The transmitted frames consist of
1000 uncoded PSK symbols. The size of the constellation al-
phabet is set to either 2 (BPSK), 4 (QPSK) or 8 (8-PSK). We
use a Gray mapping.

The CRBs associated to this setup are represented ver-
sus the Es/N0−ratio in Fig. 1. From (14), we have that the
EM convergence should be all the slower as the gap between
the incomplete-data and the complete-data CRBs increases.
For example, in the considered setup, the incomplete-data
BSPK CRB is always closer to the complete-data CRB than
the incomplete-data 8-PSK CRB. Hence, according to (14),
the EM algorithm should converge slower when applied to a
8-PSK transmission than when applied an a BPSK transmis-
sion.

Fig. 2 illustrates the relevance of the proposed approach:
we compare the EM-algorithm performance as predicted by
(14) with actual performance computed via Monte-Carlo sim-
ulations. More particularly, we have represented the mean
distance between the EM-algorithm and the ML estimate, i.e.
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Fig. 2. Mean distance between the ML estimate and the EM-
algorithm estimate at a given iteration for different constellation
sizes. Monte-Carlo simulations are compared with the performance
predicted by (14).

E
r|b[‖b̂

(n) − b̂ML‖], versus the number of EM iterations. The
Es/N0-ratio has been set to 4dB. The dashed curves corre-
sponds to the prediction computed from (14) and the circles
to the actual performance computed via Monte-Carlo simula-
tions. As far as our simulation setup is concerned, we see the
proposed CRB-based expression (14) enables to accurately
predict the EM algorithm behavior.

We now illustrate the sensitivity of the EM algorithm to
the system operating SNR. We keep the same setup as in the
previous point. The CRBs plotted in Fig. 1 are therefore still
valid for computing the MCR via (14). We see from Fig.
1, that an increase of the SNR reduces the gap between the
incomplete-data CRB and the complete-data CRB. From our
previous considerations, it seems therefore that an increase of
the system operating SNR is bene cial for the EM-algorithm
speed of convergence.

This is illustrated in Fig. 3 where we compare the perfor-
mance predicted via (14) with the one computed by Monte-
Carlo simulations for different operating SNRs. The CRB-
based predictions are plotted with dashed curves and the sim-
ulated points with circles. The constellation alphabet is a
Gray-mapped 8-PSK and we have considered Es/N0 equal
to 4, 8 and 12dB, respectively. We see from this gure that
the behavior predicted by (14) is in good accordance with the
results computed by Monte-Carlo simulations.

5. CONCLUSIONS

In this contribution, we focus on the mean convergence rate
(MCR) of the EM algorithm. In particular, based on some
building assumptions, we derived an expression relating the
EM-algorithm MCR to the Cramer-Rao bounds (CRBs) as-
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Fig. 3. Mean distance between the ML estimate and the EM-
algorithm estimate for different operating SNRs. Monte-Carlo sim-
ulations are compared with the performance predicted by (14).

sociated to the incomplete and the complete data set, respec-
tively. This expression enables an easy intuition of the EM-
algorithm behavior: the further is the incomplete-data CRB
from the complete-data CRB, the slower the EM-algorithm
speed of convergence. We illustrate our derivation by simu-
lation results in the case of EM-based iterative carrier-phase
synchronization. In particular, we showed that the perfor-
mance predicted by our approach is in good accordance with
Monte-Carlo simulation results.
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