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ABSTRACT

This paper addresses the resolution of the standard and non-

circular MUSIC algorithms for arbitrary distribution and non-

circularity of two closely spaced transmitters. Using an anal-

ysis based on perturbations of the noise projector instead of

those of the eigenvectors, interpretable closed-form expres-

sions of the threshold array signal to noise ratios (ASNR) at

which these two algorithms are able to resolve the transmit-

ters along the Cox and the Sharman and Durrani criteria are

given. We prove in particular that the threshold ASNRs given

by the noncircular MUSIC algorithm are sensitive to the non-

circularity phase separation of the sources and are comfort-

ably smaller that those given by the standard MUSIC algo-

rithm. Numerical examples illustrate these results.

Index Terms— direction of arrival, statistical performan-

ces, resolution, noncircular sources, MUSIC algorithm

1. INTRODUCTION

Deducing array resolution limits is a very old problem that has

been studied extensively in the literature, first in astronomy

and subsequently in signal processing. Based on the classical

beamformer, different resolution criteria have been defined

from the main lobe of the array spectrum as the celebrated

Rayleigh resolution that depends solely on the antenna geom-

etry. Then for specific so-called high resolution algorithms

based on the search for two local minima of directional spec-

tra such as different MUSIC-like algorithms, two main crite-

ria based on the mean spectrum have been defined. For the

first, introduced by Cox [1] and then studied by Kaveh and

Barabell [2], two sources are resolved if the midpoint mean

spectrum is greater than the mean spectrum in the two true

source DOAs and for the second one, introduced by Sharman

and Durrani [3] and studied by Forster and Villier [4], they

are resolved if the second derivative of the mean spectrum at

the midpoint is negative. Moreover, several authors have con-

sidered (e.g., [5, 6]) the resolution probability to circumvent

the possible misleading results given by these two criteria.

We note that all these studies have been obtained under

a circular Gaussian distribution of signals. The aim of this

paper is to extend some of these previous results under ar-

bitrary second-order distributions, with a particular attention

to noncircular signals often used in digital communications.

More precisely, we consider the two resolution criteria based

on mean spectra associated with the standard MUSIC algo-

rithm and with a MUSIC-like (denoted noncircular MUSIC)

algorithm introduced and studied in [7] which is an extension

of a root MUSIC-like algorithm devised in [8] to an arbitrary

array that benefits from the second-order noncircularity of the

sources.

The paper is organized as follows. The array signal model

and the statement of the problem are given in Section II. Us-

ing an analysis based on perturbations of the noise projector

instead of those of the eigenvectors, we prove in section III

that the resolution threshold expressions given by the standard

MUSIC algorithm for circular Gaussian sources impinging on

a uniform linear array (ULA) in [2] and [4] extend to arbi-

trary circular or noncircular source distributions and arbitrary

arrays. This analysis is applied in Section IV, to derive closed-

form expressions of the resolution thresholds associated with

the mean spectrum of the noncircular MUSIC algorithm as-

sociated with ULAs. These expressions confirm that the non-

circular MUSIC algorithm largely outperforms the standard

MUSIC one from the resolution point of view. Finally, nu-

merical illustrations and Monte Carlo simulations are given

in Section V with particular attention paid to the noncircular-

ity phase separation.

2. STATEMENT OF THE PROBLEM

Let an arbitrary array of M sensors receive the signals trans-

mitted by two equipowered narrowband independent sources

of power σ2
s . The observation vectors are modelled as

yt = Axt + nt, t = 1, . . . , T,

where (yt)t=1,...,T are independent and identically distribu-

ted. A = [a1,a2] is the steering matrix where each vector

ak = a(θk) is parameterized by the real scalar parameter

θk. xt = (xt,1, xt,2)T and nt model signals transmitted by

sources and additive measurement noise, respectively. xt and

nt are independent, zero-mean, nt is assumed to be Gaussian

complex circular, spatially uncorrelated with E(ntnH
t ) = σ2

n

IM ; while xt is complex noncircular not necessarily Gaus-

sian with covariance matrices Rx
def= E(xtxH

t ) and R′
x

def=
E(xtxT

t ) �= O. Consequently, this leads to two covariance

matrices of yt that contain information about (θ1, θ2)

Ry = ARxAH + σ2
nIM

def= S + σ2
nIMand

R′
y = AR′

xA
T �= O.
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These covariance matrices are classically estimated by Ry,T

= 1
T

∑T
t=1 ytyH

t and R′
y,T = 1

T

∑T
t=1 ytyT

t , respectively.

For performance analysis, we suppose that the signal wave-

forms have finite fourth-order moments κk
def= Cum(xt,k, x∗

t,k,
xt,k, x∗

t,k). The non-circularity rate ρk of the kth source is

defined by E(x2
t,k) = ρkeiφkE|x2

t,k| = ρkeiφkσ2
s where φk

is its noncircularity phase. Note that ρk = 1 in the particular

case of rectilinear signals. The ASNR is defined by Mσ2
s/σ2

n

with ‖ak‖2 = M .

The problem addressed in this paper is to derive in these

conditions, resolution threshold expressions associated with

the standard and noncircular MUSIC algorithms. The DOA

estimated by the standard MUSIC algorithm are given by the

2 smallest minima of the following so-called spectrum gAlgC
T (θ):

θ̂AlgC
k,T = arg min

θ
gAlgC

T (θ)
with

gAlgC
T (θ) def= aH(θ)ΠT a(θ),

where ΠT denotes the projector matrix associated with the

noise subspace of Ry,T . Then, for the noncircular MUSIC al-

gorithms devised for rectilinear signals1, the estimated DOA

are given by the 2 smallest minima of the following so-called

spectrum gAlgNC
T (θ):

θ̂AlgNC
k,T = arg min

θ
gAlgNC

T (θ)
with [7]

gAlgNC
T (θ) def=

(
aH(θ)Π1,T a(θ)

)2−|aT (θ)Π2,T a(θ)|2, (1)

where Π1,T and Π2,T are Hermitian and complex symmetric

respectively, given by the projector matrix

Π̃T =
(

Π1,T Π2,T

Π∗
2,T Π∗

1,T

)
associated with the noise subspace of Rỹ,T

def= 1
T

∑T
t=1 ỹtỹH

t

with ỹt is the extended observation

(
yt

y∗
t

)
for which

Rỹ
def= E(ỹtỹH

t ) = ÃRx̃ÃH + σ2
nI2M

def= S̃ + σ2
nI2M

with Ã def=
(

A O
O A∗

)
and Rx̃

def=
(

Rx R
′
x

R
′∗
x R∗

x

)
.

3. RESOLVING POWER OF STANDARD MUSIC

Since it is proved in [2] that the bias E[gAlgC
T (θ)] is substan-

tially larger that the standard deviation

√
Var[gAlgC

T (θ)], it is

reasonable to use the Cox [1] and Sharman and Durrani cri-

teria [3] for which two closely spaced sources are resolved if

the following respective conditions are satisfied:

E[gAlg
T (θ1)] = E[gAlg

T (θ2)] ≤ E[gAlg
T (θm)] (2)

1noncircular with unit rate of noncircularity, i.e., ρk = 1.

d2E[gAlg
T (θ)]

dθ2 |θ=θm

≤ 0 (3)

where θm
def= θ1+θ2

2 . Approximations to the resolution thresh-

old are deduced from equalities in (2) and (3). Consequently,

the key point to derive these resolution thresholds depends on

the expectation of the random variable gAlgC
T (θ). To obtain

this expectation, we resort to an analysis based on perturba-

tions of the noise projector [9] instead of those of the eigen-

vectors. Therefore, we consider the following second-order

expansion of δΠT
def= ΠT − Π w.r.t. δRy,T

def= Ry,T − Ry

proved in [9]

δΠT = −(ΠδRy,T S# + S#δRy,T Π)
+ S#δRy,T ΠδRy,T S# − ΠδRy,T S#2δRy,T Π

+ S#δRy,T S#δRy,T Π + ΠδRy,T S#δRy,T S#

− S#2δRy,T ΠδRy,T Π − ΠδRy,T ΠδRy,T S#2

+ o(δR2
y,T ). (4)

To proceed, we need the expression of E(δRy,T BδRy,T ) for

arbitrary M×M matrices B. Using simple algebraic manipu-

lations of E(δRT
y,T⊗δRy,T ) with E[vec(ytyH

t )vecH(ytyH
t )]−

vec(Ry)vecH(Ry) = R∗
y ⊗ Ry + K(R

′
y ⊗ R

′∗
y ) + (A∗ ⊗

A)(
∑2

k=1 κk(e2,k⊗e2,k)(eT
2,k⊗eT

2,k))(AT ⊗AH) where K
is the vec-permutation matrix for which vec(CT ) = Kvec(C),
e2,1

def= (1, 0)T and e2,2
def= (0, 1)T , we obtain the following

lemma:

Lemma 1 For independent arbitrary noncircular, possibly non
Gaussian sources, we have:

E(δRy,T BδRy,T ) =
1
T

(
Tr(BRy)Ry + R′

yB
T R′∗

y

+
K∑

k=1

κkakaH
k BakaH

k

)
+ o(

1
T

),

that allows us to prove [11] from (4)

E(δΠT ) =
1
T

(Tr(Π)U − Tr(U)Π) + o(
1
T

),

with U def= σ2
nS#RyS#. Consequently, we have

E(gAlgC
T (θ)) = gAlgC(θ) +

1
T

(
(M − 2)aH(θ)Ua(θ)

− Tr(U)gAlgC(θ)
)

+ o(
1
T

)

where gAlgC(θ) def= aH(θ)Πa(θ). This expression of the

mean spectrum coincides with those given in the circular Gaus-

sian assumption [2, 4]. Therefore we can conclude the follow-

ing result:

Result 1 The threshold ASNRs deduced from the Cox (2) and
Sharman and Durrani criteria (3) given for the standard MU-
SIC algorithm do not depend on the distribution and on the
noncircularity of the sources.
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Consequently, expressions [2, (rel.(35)], [4, rel.(18)] and [10,

rels.(91)(93)] of the threshold ASNRs remain valid for arbi-

trary distributions of the sources. The first two expressions2

of this threshold ASNR are given in the following to be com-

pared to those derived in the next section.

ξ1 =
1
T

α1,M

(Δθ)4

(
1 +

√
1 +

T (Δθ)2

β1,M

)
(5)

ξ2 =
1
T

α2,M

(Δθ)4

(
1 +

√
1 +

T (Δθ)2

β2,M

)
(6)

with α1,M
def= 20M2

(M2−1)(M+2) , β1,M
def= 5

M+2 , α2,M
def=

10M4

(M+2)(M2−1) , β2,M
def= 5M2

2(M+2) , for which Δθ
def= M(θ1 −

θ2)/2
√

33 associated with the steering vectors ak = (1, eiθk ,

..., ei(M−1)θk)T .

4. RESOLVING POWER OF NONCIRCULAR MUSIC

The previous approach applies to the noncircular MUSIC al-

gorithm by replacing Π, Ry,T and S by Π̃, Rỹ,T and S̃ in (4)

respectively. Using the following lemma proved in the same

way as lemma 1

Lemma 2 For independent rectilinear, possibly non Gaussian
sources, we have:

E(δRỹ,T BδRỹ,T ) =
1
T

(
Tr(BRỹ)Rỹ + RỹJBT JRỹ

+
K∑

k=1

κkãkãH
k BãkãH

k

)
+ o(

1
T

)

with ãk
def=

(
ak

a∗
ke−iφk

)
and J def=

(
O I
I O

)
,

we prove [11] the following expression

E(δΠ̃T ) =
1
T

(
Tr(Π̃)Ũ − Tr(Ũ)Π̃

)
+ o(

1
T

)

with Ũ def= σ2
nS̃#RỹS̃# =

(
U1 U2

U∗
2 U∗

1

)
which gives with

Π̃ =
(

Π1 Π2

Π∗
2 Π∗

1

)
E(δΠ1,T ) =

1
T

(
Tr(Π̃)U1 − 2Tr(U1)Π1

)
+ o(

1
T

)

E(δΠ2,T ) =
1
T

(
Tr(Π̃)U2 − 2Tr(U1)Π2

)
+ o(

1
T

).

This allows us to derive the mean spectrum associated with

the noncircular MUSIC algorithm (1). After simple but te-

2Note that a mistake in [2, (rel.(35)] has been corrected.
3Most of the papers dealing with this topic use this normalization, so we

also use it in order to simplify comparisons with the literature.

dious algebraic manipulations [11], we obtain under the as-

sumptions of lemma 2

E(gAlgNC
T (θ)) = gAlgNC(θ)

+
2
T

(
(2M − 3)[(aH(θ)U1a(θ))(aH(θ)Π1a(θ))

− �[(aH(θ)U2a∗(θ))(aT (θ)Π∗
2a(θ))]]

− 2Tr(U1)gAlgNC(θ)
)

+ o(
1
T

)

with gAlgNC(θ) def= (aH(θ)Π1a(θ))2−|aT (θ)Π2a(θ)|2. Sin-

ce the expression of this mean spectrum depends on the second-

order statistics only, it is the same for the different threshold

ASNRs deduced from it. This allows us to prove [11] the fol-

lowing result, after tedious algebraic manipulations obtained

from closed-form expressions of U1, U2, Π1 and Π2.

Result 2 The threshold ASNRs deduced from the Cox (2) and
Sharman and Durrani criteria (3) given for the noncircular
MUSIC algorithm and a ULA depend only on the second-
order statistics of the sources and are respectively given by

ξ1 =
1
T

αΔθ,Δφ
1,M

(
1 +

√
1 +

T

βΔθ,Δφ
1,M

)
(7)

ξ2 =
1
T

αΔθ,Δφ
2,M

(
1 +

√
1 +

T

βΔθ,Δφ
2,M

)
(8)

with Δφ
def= (φ1 − φ2) the noncircularity phase separation

and where αΔθ,Δφ
1,M , βΔθ,Δφ

1,M , αΔθ,Δφ
2,M and βΔθ,Δφ

2,M are second
order expansions in (Δθ)2 without constant term, whose co-
efficients depend on M and Δφ.

We note that these threshold ASNRs (7),(8) depend not only

on Δθ, T , M , but also on Δφ contrary to the threshold AS-

NRs obtained for the standard MUSIC algorithm. These in-

tricate expressions reduce to simple interpretable expressions

for weak and large noncircularity phase separation Δφ.

More precisely for sin(Δφ) � (M − 1)Δθ
2 , we prove

[11] that

αΔθ,Δφ
1,M ≈ 10M4(2M − 3)

(2M − 1)(M2 − 1)(8M − 11)(Δθ)4

βΔθ,Δφ
1,M ≈ 10M2(2M − 3)

(M + 1)(8M − 11)(Δθ)2

αΔθ,Δφ
2,M ≈ 5M4(2M − 3)

(M2 − 1)(M2 − 4)(Δθ)4

βΔθ,Δφ
2,M ≈ 5M2(2M − 3)

2(M2 − 4)(Δθ)2

and the behavior of the standard and noncircular MUSIC algorithms

are similar due to the similarity of the dependence in Δθ of the ex-

pressions (5), (6), (7) and (8). In the opposite case for tan(Δφ
2

) �
(M − 1)Δθ

2
, we prove that

αΔθ,Δφ
1,M ≈ 2M2(2M − 3)

(M2 − 1) sin2(Δφ
2

)(Δθ)2

βΔθ,Δφ
1,M ≈ 2M2(2M − 3)

(M2 − 1)(1 + cos2(Δφ
2

))(Δθ)2
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αΔθ,Δφ
2,M ≈ M2(2M − 3)

(M2 − 1) sin2(Δφ
2

)(Δθ)2

βΔθ,Δφ
2,M ≈ M2(2M − 3)

(M2 − 1)(1 + cos2(Δφ
2

))(Δθ)2

and the noncircular MUSIC algorithm largely outperforms the stan-

dard algorithm due to the proportionality in 1/(Δθ)2 in the place of

1/(Δθ)4 given in Result 1 for the MUSIC algorithm. Consequently

the noncircularity phase separation between the two sources plays an

important role in the behavior of the noncircular MUSIC algorithm.

5. ILLUSTRATIVE EXAMPLES

To illustrate Result 2, we consider two uncorrelated equipowered

BPSK modulated signals impinging on a ULA with M = 6 and

T = 500. We clearly see in Figs.1 and 2 that the noncircular MUSIC

algorithm outperforms the standard MUSIC algorithm for all values

of the noncircularity phase separation. We note that this difference of

behavior in resolution is connected to the best accuracy of the DOA

estimate given by the noncircular MUSIC algorithm [7] compared

to those of the standard MUSIC algorithm. This is illustrated in

Fig.3. Furthermore, by comparing Fig.1 and Fig.2 we note that the

threshold ASNRs given by the two criteria are relatively similar.
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