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ABSTRACT

Multi-Function Radars (MFRs) are sophisticated sensors with
complex dynamical modes that are widely used in surveil-
lance and tracking systems. It is shown in this paper that the
stochastic context free grammar (SCFG) is an adequate model
for capturing the essential features of the MFR dynamics. We
model MFRs as systems that “speak” according to a SCFG,
and the grammar is modulated by a Markov chain represent-
ing MFRs’ policies of operation. We then deal with the statis-
tical signal processing problems of the MFR signal, especially
the problem of threat evaluation (electronic support). Maxi-
mum likelihood estimator is derived to estimate the threat of
the MFR and Bayesian estimator to infer the system parame-
ter values.

Index Terms— electronic warfare, formal languages, max-
imum likelihood estimation, radar signal processing

1. INTRODUCTION
Multi-function radars (MFRs) are radio-frequency sensors that
are widely used in modern surveillance and tracking systems.
They have the capability to perform multitude of different
tasks such as search, acquisition and target tracking. MFRs
use electronic beam-steering antennas to perform multiple tasks
simultaneously by multiplexing them over short time scales.
Finite Markov models have been widely used to model the dy-
namics of conventional radars [1], however, due to the MFRs’
sophisticated nature, traditional radar signal processing algo-
rithms are not suited to the structure and the complexity of
MFRs’ signal. The main idea of the paper is to extend the

nite Markov model with a more general dynamical structure
called stochastic context free grammar (SCFG). We model
MFRs as a Markov modulated SCFG, and then present a sta-
tistical signal processing algorithm for evaluating the threat
MFR poses on its target.

Traditionally, MFRs’ signal modes are represented by vol-
umes of parameterized data records known as Electronic In-
telligence (ELINT) [2]; the data records are annotated by lines

of text explaining why, when and how a signal may switch
modes. When it comes to rapid radar mode estimation and
threat evaluation, ELINT is not suitable. Based on syntactic
modeling [3], SCFG is the new methodology to model MFRs’
signal and it has several potential advantages: i) SCFG is
a compact representation for modeling complex system dy-
namics, and it allows model designers to more naturally ex-
press MFRs’ control rules, and thus allows more convenient
modeling of the human computer interface. ii) Compared to
stochastic regular grammar, or equivalently hidden Markov
model, if the same number of parameters are used, SCFG
is more ef cient in modeling hidden branching process; the
predictive power of a SCFG measured in entropy is greater
than that of the stochastic regular grammar [4], and iii) the re-
cursive embedding structure of MFRs’ control rules is more
naturally modeled in SCFG; the Markovian type model has
dependency of variable length, and the maximum range de-
pendency must be considered.

In summary, the main results of the paper are: 1) A de-
tailed model of MFRs’ dynamics using SCFG. A MFR can be
viewed as a discrete event system that “speaks” some known,
or partially known, formal languages. 2) Novel use of Markov
modulated SCFG to model MFRs with changing policies of
operation. 3) The threat evaluation problem is reduced to a
state estimation problem and maximum likelihood estimator
is derived based on a hybrid of the forward-backward and the
inside-outside algorithm. The rest of the paper is organized
as follows. Sec. 2 summarizes the electronic support problem
and MFRs’ system architecture. Sec. 3 models MFRs’ signal
based on a careful study of its distinguishing features. Sec. 4
presents the threat estimation algorithm and Sec. 5 concludes
the paper.

2. ELECTRONIC SUPPORT ANDMFR
Electronic Warfare (EW) can be broadly de ned as any mil-
itary action with the objective of controlling the electromag-
netic spectrum [2]. In this paper, a sub-division of EW called
electronic support is considered where the goal is to protect
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Fig. 1. The Electronic Support framework.

targets from a radar-equipped threat by collecting radar emis-
sions and evaluating threat in real time. The speci c threat
considered is multifunction radars.

The framework of the electronic support considered in
this paper consists of three layers: Receiver/ Deinterleaver,
Pulse train analyzer and Syntactic processor [3]. The layers
are depicted in Fig.1 and a brief description is given here:
The receiver processes the radar pulses intercepted by the
antenna, and outputs a sequence of pulse descriptor words,
which is a data structure containing parameters such as carrier
frequency, pulse amplitude or pulse width. The deinterleaver
processes the pulse descriptor words, groups them according
to their possible originating radar emitters and stores them in
their corresponding track les. The pulse train analyzer pro-
cesses the track le, and further groups the pulse descriptor
words into radar words. (See below for de nitions.) Finally,
the syntactic processor analyzes the syntactic structure of the
radar words, estimates the state of the radar system and its
threat level, and outputs the results on a pilot instrumentation
panel. Because the receiver, deinterleaver and pulse train an-
alyzer have been well studied, the syntactic processor is the
focus of this paper.

The main purpose of the syntactic processor is to capture
the structural patterns in the MFRs’ signal and evaluates its
threat. We will start by studying the basic assumptions of the
MFRs’ signal. The building blocks making up MFRs’ signal
are de ned as follows: i) Radar word: A xed arrangement of

nite number of pulses that is optimized for extracting a par-
ticular target information. For example pulses with a xed
pulse repetition frequency. ii) Radar phrase (radar task):
Catenation of nite number of radar words. Each phrase may
be implemented by more than one catenation of radar words.
Examples are search and target acquisition. iii) Radar pol-
icy: Pre-optimized schemes that allocate different amount of
resources to different radar phrases. An example is rules of
engagement or policies of operation. The generation pro-
cess of radar words is governed by the MFRs’ system ar-
chitecture1, and which is illustrated in Fig. 2. A MFR con-

1The system architecture does not include multiple target tracking func-
tionalities such as data association. The paper focuses on a single target’s self
protection and threat estimation, and thus models only the radar signal that a
single target can observe.
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Fig. 2. MFR consists of a situation assessment module, a
system manager, a radar controller and a phrase scheduler.

sists of three main components: Situation assessment, Sys-
tem manager and Phrase scheduler/Radar controller. The sit-
uation assessment module provides feedback of the tactic en-
vironment, and the system manager, based on the feedback,
selects a radar policy. Each radar policy is a resource al-
location scheme that represents trade-offs between different
performance measures, and it dictates how the phrase sched-
uler/radar controller will operate.

MFRs are modeled with two queues because of their need
to be adaptive and fast [5]. Phrase scheduler pro-actively
monitors the feasibility of the radar phrases in the planning
queue sequentially [1]. It processes different types of radar
phrases by their corresponding control rules; the rule takes
the radar phrase being processed as input, and responds by
appending appropriate radar phrases into the command queue
and/or the planning queue. The selection of the control rules
is a function of radar policies, and which are expressed by
how probable each rule would be selected. Radar controller,
on the other hand, allows the MFR to have nite response
time. It processes the radar phrases in the command queue
sequentially and maps them to a multitude of different radar
words according to a set of control rules. Such an arrange-
ment follows the macro/micro architecture as described in
Blackman and Popoli [1].

3. A SYNTACTIC APPROACH TO MFR
For a description of the formal language theory, please see
[6]. As an illustrative example showing the correspondence
between the grammar and the MFR, consider the grammatical
production rules of the form i) A → a A and ii) A → B A,
where A and B are radar phrases in the planning queue and a

is a radar phrase in the command queue. A → a A is inter-
preted as a control rule that append a to the command queue,
and A to the planning queue. Similarly, A → B A is inter-
preted as preempting A in the planning queue and inserting
B in front of A. Suppose the planning queue contains a radar
phrase A, a possible realization of the radar word generation
process is illustrated in Fig.3. It can be seen that as long as
the command queue phrases appear only to the left of plan-
ning queue phrases in the rule, the command queue and the
planning queue are well represented.
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Fig. 3. A possible realization of the scheduling process rep-
resented by a grammatical derivation process. A and B are
radar phrases in the planning queue, a and b are radar phrases
in the command queue, and w and y are radar words.

Because the syntactic modeling is application dependent,
for illustrative purpose, the discussion is based on a particular
MFR called Mercury (the declassi ed version of the radar’s
textual intelligence reports can be found in [7]). The set of
radar words, {w1, . . . , w9}, consists of nine distinct elements.
The set of radar phrases is {3-Word search, 4-Word search,
Acquisition, Non-adaptive track, three stages of Range reso-
lution, Track maintenance, Fine track maintenance}, and it is
written in shorthand as {3WSt, 4WSt, At, NAT t, RR1t, RR2t,
RR3t, TMt, FTM t}, where t = p or c denoting planning queue
phrases or command queue phrases respectively.
Radar Controller The main purpose of the radar controller is
the mapping of the command queue phrases to radar words.
The production rules associated with the mapping are listed
below, and they are constructed based on the syntactic pattern
of the radar words [7].

4WSc →W1W2W4W5| NAT c →S1T6|Q6

W2W4W5W1| RR1c →W7T6

W4W5W1W2| RR2c →W8T6

W5W1W2W4 RR3c →W9T6

3WSc →W1W3W5W1| Ac →Q1|Q2|Q3|Q4|Q5|Q6

W3W5W1W3| TMc →S1T6|S2T7|S2T8|S2T9

W5W1W3W5 FTMc →Q6|Q7|Q8|Q9

S2 →S1|W6 T6 →W6W6W6

S1 →W1|W2|W3|W4|W5 T8 →W8W8W8

Qi →WiWiWiWi T9 →W9W9W9

Wi

pi
−−→wi fori = 1, . . . , 9

Phrase Scheduler The phrase scheduler models the MFRs’
ability to plan and to preempt radar phrases. To simplify the
discussion, suppose the planning queue phrases are {A, B, C}
and the command queue phrases are {a, b, c}, the basic con-
trol rules that are available to the phrase scheduler are i) Markov
B → bA|bB|bC, ii) Adaptive B → AB|BC and iii) Termi-
nating B → b. The interpretation of the rules follows the
example given at the beginning of the section.

The signi cance of the Markov rule is obvious. The adap-
tive rules, on the other hand, model MFRs’ ability to resched-
ule radar phrases when the system loading or the tactic envi-
ronment changes. The two adaptive rules model the MFRs’
ability to i) Preempt and ii) Plan the radar phrases. The pre-

empt ability is demonstrated in the rule B → A B where
the radar phrase B is preempted when a higher priority task
A enters the queue. The ability to plan is captured in the rule
B → B C where the phrase C is scheduled ahead of time if
its predicted performance exceeds a threshold. Furthermore,
the terminating rule re ects the fact that the queues have -
nite length, and the grammatical derivation process must ter-
minate and yield a terminal string of nite length. The spec-
i cation of the grammar is complete if the production rules’
probabilities were assigned, and which will be discussed next.
Remark: The set of production rules presented above is a self-
embedding context free grammar and thus its language is not
regular, and cannot be represented by a Markov chain [6]. A
context-free grammar is self-embedding if there exists a non-
terminal A such that A

∗
⇒ ηAβ with η, β ∈ (N ∪ T )+. For

the rules presented, self-embedding property can be shown by
a simple derivation B → A B → A B C.

SystemManager The phrase scheduler and the radar controller
form the context free backbone of the MFRs’ grammar. The
system manager, for each time period, assigns probabilities to
the backbone based on the policies of operation, its internal
system state. The evolution of the system manager is mod-
eled as a Markov chain, and in essence, MFR is a Markov
modulated SCFG.

Let k = 0, 1, . . . denotes discrete time. The state, xk , is a
M-state Markov chain. De ne the transition probability ma-
trix as A = [aji]M×M , where aji = P (xk = ei|xk−1 = ej)
for i, j ∈ {1, 2, . . . , M}. In each state, speci c probabil-
ity values are assigned to the production rules of the MFR’s
context-free backbone, and thus the MFR is modeled to “speak”
a different “language” in each state according to its state gram-
mar. One practical issue is that the signal generated by radar
systems has nite length, and this niteness constraint is dis-
cussed by rst de ning the stochastic mean matrix.
De nition Let A, B ∈ N , the stochastic mean matrixMN is
a |N | × |N | square matrix with its (A, B)th entry being the
expected number of variables B resulting from rewriting A:

MN(A, B) =
∑

η∈(N∪T )∗s.t.(A→η)∈P

P (A → η)n(B; η)

where P (A→ η) is the probability of applying the production
rule A → η, and n(B; η) is the number of instances of B in
η [8].

The niteness constraint is satis ed if the grammar in each
state satis es the following theorem.
Theorem If the spectral radius of MN is less than one, the
generation process of the stochastic context free grammar will
terminate, and the derived sentence is nite.
Proof The proof can be found in [8].

4. THREAT AND PARAMETER ESTIMATION
Threat evaluation is reduced to the estimation of MFR’s poli-
cies of operation. Let x0:n = (x0, . . . , xn) be the (unknown)
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state sequence, and γ1:n = (γ1, γ2, . . . , γn) be the corre-
sponding intercepted radar signal stored in the track le. Each
γk = (w1, w2, . . ., wmk

) is a string of concatenated terminal
symbols (radar words), and mk is the length of γk.

Assuming complete knowledge of system parameters, i.e.,
the Markov chain’s transition matrix and the SCFG’s produc-
tion rules, the MFR’s state estimation could be trivially im-
plemented using the Viterbi algorithm and the Inside algo-
rithm 2. In reality, such parameters are often unknown and
inferrence of the parameter values is essential. In this sec-
tion, EM algorithm is applied to a batch of noisy radar sig-
nal, and parameters are estimated iteratively. In EM’s ter-
minology, the radar words, γ1:n, is the incomplete observa-
tion sequence, and it is made complete if augmented with
{x0:n, C1:n}. C1:n = (C1, . . . , Cn) is the number of counts
each production rule is used to derive γ1:n, and in particu-
lar, Ck = (C1(A → η; γk), C2(A → η; γk), . . . , CM (A →
η; γk)) and Ci(A → η; γk) is the number of counts grammar
Gi applies the production rule A→ η in deriving γk.

Denote the model parameters as Φ = { aji, P 1(A → η),
P 2(A → η), . . .,PM (A → η)}, where P i(A → η) is set of
production rule probabilities of grammar i, for any φ ∈ Φ, the
complete-data likelihood is

Ln(φ) =
n∏

k=1

P (γk, Ck|xk, φ)P (xk|xk−1, φ)P (xo|φ).

The Expectation step of the EM algorithm yields:

Eφ̃(logLn(φ)) =
n∑

k=1

∑

xk

∑

Axk

∑

T xk

Eφ̃(Cxk(A→ η; γk)) log P xk(A→ η)χxk
(k)

+

n∑

k=1

∑

xk

∑

xk−1

log(axk|xk−1
)ξxk−1xk

(k − 1)

+

n∑

k=1

∑

x0

log P (x0)χx0
(k)

where Eφ̃(Cxk(A → η; γk)) can be computed using inside
and outside algorithms [4], and χi(k) = P (xk = ei|γ1:n)
and ξji(k) = P (xk = ej , xk+1 = ei|γ1:n) are variables as
de ned in [9] that can be computed readily with forward and
backward algorithms.

The Maximization step of the EM algorithm could be com-
puted by applying Lagrange Multiplier. Since the parameters
we wish to optimize are independently separated into three
terms in the sum, we can optimize the parameter term by term.
The updating equation of the production rule probabilities is

P xk(A→ η) =

∑n
k=1 Eφ̃(Cxk(A → η; γk))χxk

(k)
∑

η

∑n
k=1 Eφ̃(Cxk(A → η; γk))χxk

(k)
.

2The estimator of MFR’s state at time k is x̂k = arg maxi P (xk =
ei|γ1:n),, and the output probabililty of γk could be computed ef ciently by
the Inside algorithm.

and the updating equation of the transition matrix is aji =
∑ n−1

k=1
ξji(k)

∑ n−1

k=1
χj(k)

. Iterative computations of the expectation and
maximization steps above will produce a sequence of param-
eter estimates with monotonically nondecreasing likelihood.
Due to space limitation, detailed numerical studies are not
presented, however, in summary, the estimated state sequence
has average error rate of 6.67%, and the estimated parameter
values are suf ciently close to the true values.

5. CONCLUSION
In this paper, the multifunction radar is carefully studied and
modeled as a Markov modulated SCFG. The threat evalua-
tion is reduced to a state estimation problem, and a maximum
likelihood estimator is derived to evaluate the threat. In ad-
dition, a Bayesian algorithm with EM is derived to infer the
unknown model parameters.

6. REFERENCES

[1] S. Blackman and R. Popoli, Design and Analysis of Mod-
ern Tracking Systems, Artech House, 1999.

[2] R. G. Wiley, Electronic Intelligence: The analysis of
radar signals, Artech House, 1993.

[3] N. A. Visnevski, F. A. Dilkes, S. Haykin, and V. Krishna-
murthy, “Non-self-embedding context-free grammars for
multi-function radar modeling - electronic warfare appli-
cation,” International Radar Conference, pp. 669–674,
2005.

[4] K. Lari and S. J. Young, “The estimation of stochas-
tic context free grammars using the Inside-Outside algo-
rithm,” Computer Speech and Language, vol. 4, pp. 35–
56, 1990.

[5] P. L. Bogler, Radar Principles with Applications to
Tracking Systems, John Wiley & Sons, 1990.

[6] N. Chomskey, “On certain formal properties of gram-
mars,” Information and Control, vol. 2, pp. 137–167,
1959.

[7] A. Wang, V. Krishnamurthy, F. A. Dilkes, and N. A. Vis-
nevski, “Threat estimation by electronic surveillance of
multifunction radars: a stochastic context free grammar
approach,” Conference on Decision and Control, 2006.

[8] Z. Chi, “Statistical properties of probabilistic context-
free grammars,” Computational Linguistics, vol. 25, pp.
131–160, 1999.

[9] L. R. Rabiner, “A tutorial on hidden markov models and
selected applications in speech recognition,” Proceedings
of IEEE, vol. 77, pp. 257–286, 1989.

III  796


