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ABSTRACT

Analytical modeling for video coders can be used in a variety of 

scenarios where information concerning rate, distortion or 

complexity is essential for driving system or network interactions 

with media algorithms. While rate and distortion modeling have 

been covered extensively in previous works, complexity is not 

well addressed because it is highly algorithm dependent and 

hence difficult to model. Based on a stochastic modeling 

framework for the transform coefficients, we present a novel 

complexity analysis for state-of-the-art wavelet video coding 

methods by explicitly modeling several aspects found in 

operational coders, i.e. embedded quantization and quadtree 

decompositions of block significance maps. The proposed 

modeling derives for the first time analytical estimates of the 

expected number of operations (complexity) for a broad class of 

wavelet video coders based on stochastic source models, coding 

algorithm and system parameters. 

Index Terms: Multimedia Systems, Resource Modeling, 

Statistical Modeling of Media Decoding Complexity  

I. INTRODUCTION

Recent compression algorithms such as the H.264/AVC 

standard and wavelet video compression [1] achieve 

breakthroughs in terms of rate-distortion (R-D) performance at 

the expense of a significant increase in complexity (in terms of 

CPU time, or energy dissipation) compared to older coding 

schemes such as MPEG-1 or MPEG-2. Hence, accurate models 

that encapsulate the source, algorithm and system characteristics

are very important for benchmarking existing video coders and 

facilitating the design of future video coders.

Two methods have been used to determine the complexity 

characteristics of operational video coders. The first is an 

empirical approach, where analytical formulations are fitted to 

experimental data to derive an operational model for a particular 

class of video sequences, instantiation of a compression 

algorithm, and a fixed architecture [2]. While this modeling 

approach is simple, fine-granular adaptation of algorithm or 

system parameters is not possible, since one can not predict the 

expected complexity for a different input video source or 

compression algorithm configuration. This led to current state-of-

the-art multimedia compression algorithms and standards 

providing only very coarse levels (profiles) of complexity [2] and 

hence quality, thereby neglecting the vast resource diversity and 

heterogeneity of devices and systems. 

The second approach is a theoretical approach, where a 

stochastic model is used for each pixel or transform coefficient. 

While several works have modeled complexity using operational 

source statistics and offline or online training to estimate (learn) 

the algorithm and system parameters [4], to the best of the 

authors’ knowledge, scarcely any work has addressed the 

information-theoretic modeling of complexity in function of 

stochastic source models and practical algorithm characteristics.

In this paper, we follow the second approach to predict 

complexity in terms of the number of certain operations 

performed (e.g. the number of symbols read from the bitstream), 

thereby complementing prior work on information-theoretic R-D 

modeling [3]. We focus mainly on the quantization and coding 

process of intra and error frames and present for the first time a 

stochastic framework for complexity prediction of entropy 

decoding and the inverse spatial transform in a broad class of 

wavelet video coders based on easily-obtained source, algorithm 

and system parameters. 

The paper is organized as follows. Section II introduces the 

coder, a model for wavelet coefficients, and some important 

nomenclature. Based on these models, in Section III we derive 

probability estimates for a variety of coding/decoding operations 

that will be used to determine the complexity (Section IV) for 

decoding a video sequence. Section V displays theoretical and 

experimental complexity-quality results that validate the proposed 

models. Section 0 concludes the paper. 

II.CODER STRUCTURE AND WAVELET COEFFICIENT MODELING

A. Coder Structure 

Recent state-of-the-art scalable video coding schemes are based 

on motion compensated temporal filtering (MCTF) [1]. During 

MCTF, the original video frames are filtered temporally in the 

direction of motion, prior to performing the spatial transformation 

and coding. Video frames are filtered into L  (low-frequency) and 

H  (high-frequency) frames [1]. The process is recursively 

applied to subsequently-produced L  frames to form a total of 

MCTFT  temporal levels. The derived L  and H  temporal frames 

are spatially decomposed in a hierarchy of spatio-temporal 

subbands.

Figure 1. Block diagram of intra-band coding process of state-of-

the-art wavelet-based coders encompassing quadtree and block 

coding of the significance maps. 
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In all state-of-the-art wavelet coders [5], the coding process 

exploits intra-band dependencies following a block-partitioning 

process within each transform subband. A generalized form of 

this partitioning for every bitplane b  is outlined in Figure 1. As 

indicated there, several coding passes that identify coefficient 

significance or refine wavelet coefficients with respect to the 

current SAQ threshold are performed within quadtree coding or 

within block coding. 

B.Wavelet Coefficient Modeling of Spatio-temporal

Subbands

Low-frequency wavelet coefficients are typically modeled 

using independent Gaussian random variables after subtracting 

the mean value [3] [5]. High frequency wavelet coefficients are 

often modeled by decorrelated, but non-independent random 

variables X  using a doubly-stochastic process, i.e. a Gaussian 

distribution parameterized by , which follows a marginal 

distribution of a Laplacian random variable with variance 2  [3] 

[6]:  

( )2 2~ ( ) 1 expp =  (1) 

( )( ) ( | ) ( ) 1 2 exp | | 2p x p x p d x= =  (2) 

The results of Table 1 show an instantiation of this model fitted 

to a real video sequence. We conclude that the coarser spatio-

temporal high-frequency subbands exhibit significant variance 

and the correlation of the subband statistics (parameter ) varies 

significantly as well. Consequently, contrary to the notion that 

only the low-frequency subbands are essential for complexity 

prediction, high-frequency subbands contain a significant portion 

of complexity for a variety of quantization thresholds, and hence 

an accurate model is important for predicting the overall 

complexity. 

Subband variance 2 , [variance of ]Temporal 

(T)-Spatial

(S) level LH HL HH, LL (if exists

2T-2S 6.59, [37.5] 5.55, [22.8] 4.46, [25.7] 

4T-4S 39.69, [241] 33.23, [496] 
{25.98,[144]},

{53.12, 690]} 

Table 1. Examples of subband variances as well as the variance of 

the correlation  (for a block of 4 4× ) formed across the 

spatio-temporal MCTF decomposition of sequence Foreman. 

We now introduce some important nomenclature. Denote the 

minimum decoded bitplane threshold level as min
min

2BBT = . In 

addition, we define the following parameters for all bitplanes: 

b bv T= , 2 b
b e=  (3) 

where b  describes the ratio of the threshold of bitplane b  to the 

variance of each wavelet coefficient and b  is the probability of 

significance of a wavelet coefficient under a certain b  under the 

model of (2). In this paper we analyze intra-band coders that use 

quadtrees to decompose subbands into non-overlapping blocks of 

dyadically-decreasing sizes and then encode the minimum block 

size using context-based adaptive arithmetic coding. The initial 

subbands are hierarchically split in K  quadtree levels, with 

blocks at quadtree level K  having the smallest size. If a block at 

quadtree level k , 2 k K , has n  coefficients, its parent 

block at level 1k  has 4n  coefficients. We define the 

significance test of a block of n  coefficients with respect to a 

threshold bT  as sig( , ) {0,1}b n = . We also define the newly 

significance test as newsig( , ) {0,1}b n = , which returns one if 

the block was found to be significant at bitplane b  and 

insignificant at bitplane 1b + , i.e. sig( , ) 1b n =  and 

1sig( , ) 0b n+ = . For notational abbreviation, the probability of 

a block being significant or newly-significant at bitplane b  is 

indicated by band
,bv n  and band

,bv n , respectively, with 

band {low,high}=  indicating the frequency subband that the 

block belongs to.

III. APPROXIMATION OF BLOCK SIGNIFICANCE

PROBABILITIES IN QUADTREE DECOMPOSITIONS

Under the stochastic modeling framework, we derive several 

important probabilities of significance for quadtree 

decompositions of quantized spatio-temporal subbands. These 

probabilities form the core of the complexity estimation as they 

provide the means of establishing the percentage of blocks that 

are expected to be coded or decoded at a given terminating SAQ 

threshold
minBT . In addition, the percentage of significant blocks 

within the spatio-temporal subbands along with the percentage of 

non-zero coefficients are the two features that express the 

complexity of the inverse DWT [4]. 

A. Probability of Block Significance at Bitplane b 

Let us first consider a high-frequency spatio-temporal subband, 

which may be any subband of an error (H ) frame, or any high-

frequency subband of an L  frame. Assuming the variance of the 

subband coefficients to be 2 ,  we have: 

Pr{sig( , ) 1} 1 Pr{| | }b bn T= = X  (4) 

where 1 2( , ,..., )nX X X=X  is a length-n  random vector of all 

the coefficient random variables iX  (1 i n ) of a block, and 

| | is the infL  norm. Considering that block sizes are generally 

small enough to capture local variances, we follow the doubly 

stochastic model in equation (3) to derive the conditional joint 

distribution of X :

2 2 2
1 22

0

1 1
( ... )22 2

0

( ) ( | ) ( )

1 (2 )
nx x xn

p p p d

e e d

+

+ + +

+

=

=

X X

(5)

Proposition 1: The probability that a block of size n is significant 

compared to threshold bT  can be approximated by:  

{ }high 2
, Pr{sig( , )=1} exp ( )

b n b bn k n  (6) 

with 1.296( ) ln( ) +0.166k n n= .

 Proof: See [8].                    

For low-frequency subbands, the probability of block 

significance is simply the n -dimensional Gaussian tail 

probability along one of the orthogonal axes: 

( )low
, Pr{sig( , ) 1} erfc 2

b

n

n b bn =  (7)

B.Probability of a Newly Significant Block at Bitplane b 

In order to model the number of operations performed during 

the quadtree significance pass at each bitplane, it is necessary to 

derive the probability that a block is found significant at bitplane 

b , but not at any higher bitplanes. 

Proposition 2: The probability that a block of n  coefficients in a 

high-frequency subband is found significant at bitplane b , but it 

is insignificant at bitplane max1, ,b B+  is: 

high high high
, , ,(1 )

b b bn n n  (8) 
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Proof: See [8].                     

Proposition 3: The probability that a block of n  coefficients in a 

low-frequency subband is found significant at bitplane b , but it is 

insignificant at bitplane max1, ,b B+  is: 

1

low low low
, , ,(1 )

b b bn n n+
 (9) 

Proof: The approximation of (9) is a straightforward result of 

independent Gaussian coefficients.              

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Coastguard sequence, HH2 subband of Temporal Level 4

bit-plane level b

p
ro

b
. 

s
ig

n
if
ic

a
n
t 

b
lo

c
k
s

sig. blocks simulation

sig. blocks model

newly sig. blocks sim.

newly sig. blocks model

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Foreman sequence, HL3 subband of Temporal Level 3

bit-plane level b

p
ro

b
. 

s
ig

n
if
ic

a
n
t 

b
lo

c
k
s

sig. blocks simulation

sig. blocks model

newly sig. blocks sim.

newly sig. blocks model

Figure 2. Simulation and model prediction of 
high
,16b

,
high
,16b

( 4 4×  blocks in high-frequency spatio-temporal subbands). 
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Figure 3. Simulation and model prediction of low
,16b

, low
,16b

( 4 4×  blocks in LL  subbands of L  frames). 

Figure 2 and Figure 3 demonstrate the accuracy of the model 

prediction of probability of block significance and newly-

significance (with 16n = ) for several subbands belonging to 

two MCTF-decomposed frames of video sequences. Note that the 

high-frequency subbands exhibit a heavy-tail for significance 

(and newly-significance) between bitplanes {1,6}b = ; hence the 

complexity of high-frequency subband coding is significant at 

finer quantization levels. 

IV. COMPLEXITY OF ENTROPY DECODING AND IDWT 

We model the complexity of decoding in terms of the number 

of symbols read from the entropy decoder (Subsection A and B) 

since predicting the symbol encoding/decoding operations 

captures the complexity of entropy coding implementations in 

real processor-based designs in an accurate manner [4]. Similarly, 

the complexity of inverse spatial DWT is modeled as a 

decomposition to a pair of functions relating to the sparsity of 

each subband’s decoded wavelet coefficients (Subsection C). 

A.Quadtree Decoding Complexity 

The complexity of decoding the quadtree significance at 

bitplane b  depends on the size of the quadtree before the 

significance pass. The significance of a block in the quadtree 

decomposition may be encoded in two cases: i) If the block is 

found newly significant at bitplane b , its significance will be 

encoded at that moment and it will never be encoded again; ii) if 

the block’s parent is found to be significant at bitplane b  even 

though the block itself is non-significant, it will be coded 

continuously until it is found newly significant. Notice that 

condition (ii) is added in most state-of-the-art coders to exploit 

the property of intra-band spatial correlation of coefficients.  

Under the above-stated two conditions, the probability that the 

significance of a block of size n  is coded at bitplane b  and that 

its parent’s significance is coded at bitplane b r+ , 0r ,

(which means that the block significance will be coded a total of 

1r +  times) can be formulated as: 

max

block_sig

0

(newsig( , ))

Pr{sig( , 4 ) 1 | newsig( , ) 1}

b

B b

b r br

C n

n n+=
= = =

 (10) 

Averaging over all bitplanes , 1, ,b r b r b+ + , we get the 

following rate estimate: 

max max

block_sig

-
band
,

= =0

( , )

= Pr{sig( , 4 )=1 | newsig( , )=1}

b

B B

n r

b r

C n

n n+

(11)

where band {low,high}=  depending on the frequency 

subband of interest. Pr{sig( , 4 ) 1 | newsig( , ) 1}b r bn n+ = =  can 

be obtained using Bayes' rule: 

{ }

{ } , ,

Pr sig( , 4 ) 1 | newsig( , )

Pr newsig( , ) 1 |
b r b

b r b

b n n

n n

n
+

+ =

= =
 (12) 

where:

( )

( )( ) 24
band 2
,4 1

| sig( , 4 )

1 1 erf 2 1
b r

b r

n

n b r

p n

T e
+

+

+ +=
 (13) 

Using similar approximations as in [8], we obtain the following 

(details can be found in [8]): 

{ } band
, ,Pr newsig( , ) 1 |

bb n rn =  (14) 

( )
1

band band
,4 ,bandband

,, ,

1

1

b r b

bb

n n
nn r

+ +

+ 22

,
( ) (4 )

, otherwise

b rb TT

k n k n

+

 (15) 

Combining (11)–(15) together, we obtain the final expression: 
max max band band

block_sig , , ,0
( , )

r

B B

b n n rb r
C n

+= =
=  (16) 

The average rate per coefficient is block_sig( , )/bC n n . If we 

let n  be the smallest block size, then summing up the rates for 

K  levels of the quadtree decomposition gives the total rate for 

quadtree encoding within the subband: 

( )quadtree block_sig0
( ) ( , 4 ) 4

K k k
b bk

C C n n
=

=  (17) 

B.Block and Refinement Decoding Complexity 

We group together the number of symbols read from 

significance coding and refinement, since a coefficient will be 

significance-coded or refined at bitplane b  as long as the it is in a 

significant block at bitplane b  or higher. The sign is also encoded 

once when a coefficient is significant, which occurs with 

probability b  at bitplane b . Summing up all symbols read in the 

passes down to minB :

( )

( )

max

min min
min

max

min min

low low
coef ,

high high
,

( ) 4

4

b

b

BK
B B nb B

BK
nB b B

C n

n

=

=

= +

+ +
 (18) 

Since each subband is encoded independently, the complexity 

metrics must first be estimated for each subband and then 

summed in the same weighted fashion as the rate calculation. In 
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other words, for a given frame i , 1 i N , we have: 

min min min

3
- -

op op, ,0 op, ,
1 1

( )=4 ( )+ 4 ( )
J

i J j
B J B j k B

j k

C v C C
= =

 (19) 

where { }op quadtree,coef=  and 
minop, , ( )j k BC  is the 

quadtree and block coding complexity for each subband at spatial 

resolution j . A linear combination of block and quadtree 

complexity metrics 
min min1 quadtree 2 block( ) ( )i i

B Ba C v a C v+  estimates 

the total number of RS operations for frame i .

C.Complexity of the Inverse Spatial DWT 

We model the transform-related complexity of a coding system 

that processes N  video frames by expressing it as a 

decomposition into two functions relating to: i) the percentage of 

non-zero coefficients for a given SAQ threshold bT  (function 

nonzero ); ii) the sum of run-lengths of zero wavelet coefficients 

(function runlen ). The motivation behind (i) is that the number 

of non-zero multiply-accumulate (MAC) operations in the 

synthesis filter-bank is directly proportional to the percentage of 

non-zero coefficients. Moreover, the distribution of zero run-

lengths within the transform subbands affects the number of 

consecutive filtering operations that can be avoided altogether. 

The complexity of the inverse spatial DWT (non-zero MAC 

operations) can be formulated as: 

nonzero nonzero runlen runlen dec_constFC = + +N N N N N N
C C C 1  (20) 

with nonzero
N  and runlen

N  the N -element vectors of the 

corresponding functions. The parameter vectors nonzero
N
C  and 

runlen
N
C  can be estimated based on linear MMSE fitting over the 

actual number of MAC operations and model-based nonzero
N  and 

runlen
N . nonzero  for the high-frequency spatio-temporal 

subbands is derived by (3), while for the low-frequency spatio-

temporal subbands it is derived by: 

( )min
nonzero 2

erfc B=  (21)  

In addition, runlen  is derived by the percentage of non-

significant blocks for a certain SAQ threshold 
minBT , given by: 

min min

band
runlen ,Pr{sig( , ) 0} 1

BB nn= = =  (22)  

with
min

band
,B n  estimated by (6) for the high-frequency temporal 

subbands and by (7) for the LL  subband of the L  frames. 

Following the lifting dependencies of popular wavelet filter-pairs, 

we set an average of 64n =  since a window of 7 7×
coefficients and 9 9×  coefficients is used in the lifting steps of 

the inverse DWT [5]. 

V. EXPERIMENTATION AND RESULTS

We validate the derived analytical complexity expressions 

above by presenting experiments with two common interchange 

format (CIF) resolution sequences (“Coastguard”, “Foreman”) 

that encapsulate a variety of motion and texture characteristics 

using the coder in [7]. Figure 4 and Figure 5 present our results 

for a variety of spatial (S) and temporal (T) decomposition levels. 

The results indicate that the proposed complexity modeling 

predicts the experimental behavior of the advanced MCTF-based 

wavelet video coder accurately for the different cases under 

investigation. Note that different coding parameters, such as the 

number of spatio-temporal levels, can lead to significant tradeoffs 

between entropy decoding and inverse transform complexity. 

VI. CONCLUSIONS

This paper presents an analytical modeling framework that 

derives complexity predictions for wavelet-based video coders. 

By analytically deriving probabilities for block and coefficient 

significance according to the quantization threshold, we derived 

analytical models that approximate well the complexity behavior 

of a wide variety of modern wavelet-based video coder. In this 

way, this work bridges the gap between the operational 

measurements used in prior complexity modeling work and 

information-theoretic estimates common in rate-distortion 

modeling work. 
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Figure 4. Entropy decoding complexity vs. distortion plots for 

different spatio-temporal decomposition parameters; “S” and “T” 

indicate the number of spatial and temporal levels (respectively). 
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Figure 5. IDWT complexity vs. distortion plots for different 

spatio-temporal decomposition parameters; “S” and “T” indicate 

the number of spatial and temporal levels (respectively). 
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