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ABSTRACT

Scattering of radio waves on rough surfaces is investigated
using ray tracing techniques, which results in a sinusoidal
model with time varying amplitudes. An AR(d) model with
nonzero mean is proposed to characterize and predict the
time variation of the amplitudes. A covariance sequence
based method is proposed to estimate the autoregressive co-
ef cients from the channel observations. An adaptive chan-
nel predictor using a Kalman lter is proposed to predict the
complex amplitudes of the scattering signal. The proposed
method outperforms other sinusoidal modeling based chan-
nel predictors and Linear Predictors with single scattering
scenarios in simulations.
Index Terms - Adaptive Kalman ltering, Wave propa-

gation, Rayleigh channels, Prediction methods

1. INTRODUCTION

Re ections and scattering of radio waves on different physi-
cal objects provide the multipath propagation environments
in wireless communications. A propagation path via re ec-
tion on a smooth surface results in a constant Doppler fre-
quency component in a Rayleigh fading channel. With p
specular re ection paths, the channel h(t) could be mod-
eled as

h(t) =

p∑
i=1

sie
jωit, (1)

where si and ωi are the complex amplitude and the Doppler
frequency respectively. In this paper, j is used as both sub-
script and

√−1when there is no risk for notation confusion.
The estimated channel is

y(t) = h(t) + e(t), (2)

where e(t) is the estimation error with pdf, CN (0, σ2
e). In

the following discussion, we assume that y = [y(t), y(t −
1), · · · , y(t−N+1)]T is observed, where T is transpose op-
eration. Such a model with constant parameterswas adopted

in channel predictors based on sinusoidal modeling in [1]-
[4]. But it was observed that these model parameters expe-
rience slow time evolution in measurement data [5]. This
leads to signi cant degradation of the performance compar-
ing to those in simulations.
Efforts have been made to alleviate the in uence of the

time varying model parameters, i.e. [4], where the com-
plex amplitudes, s = [s0, s1, · · · , sp]

T , and the frequencies,
ω = [ω0, ω1, · · · , ωp]

T , of the sinusoidal signals were mod-
eled as Gaussian random variables with pdf, CN (0, σ2

s Ip),
andN (ω̂, σ2

ωIp) respectively. The vector ω̂ is the estimated
Doppler frequencies. This extension helps to improve the
performance of predictors based on sinusoidal modeling,
but the relative performances between Linear Predictors (LP)
and these methods does not agree by using simulation data
and measurement data.
In this paper, a model of scattering on rough surface is

proposed, which results in a sinusoidal model with constant
frequency and time varying amplitudes. Such a model is
more suitable to generate Rayleigh fading channels in re-
lated studies in wireless communications, such as MIMO
channelmodeling, channel prediction, and beamforming etc.
To characterize the dynamics of the amplitudes, an AR(d)
model with nonzero mean is proposed. To be able to track
the time varying amplitudes, an adaptive channel predic-
tor using a Kalman lter is proposed. Its performance is
evaluated using simulation data in single scattering clus-
ter scenarios. Extensive performance evaluation in multiple
scattering clusters and measurement data is kept for future
work.

2. MODELS OF SCATTERING ON ROUGH
SURFACES

In practice, it is most likely that the re ection of radio wave
is on a rough plane, where the re ected wave becomes scat-
tered from a large number of positions on the surface. The
degree of the scattering depends on the incidence angle and
on the roughness of the surface in comparison to the wave
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length, λ. So the radio channel scattered on the ith rough
surface can be approximated as

hi(t) =

qi∑
j=1

s′iri,je
jkli,j(t), (3)

where qi is the number of re ection positions in the scat-
tering area, s′i is the amplitude of the incident wave before
re ection, li,j(t) is the path length and is a function of time,
and k = 2π/λ is the wave number, ri,j is termed re ection
coef cient , which depends on the impedance of the media
and the incident angle. Note that the re ection coef cients
at different positions are assumed to be identical over time
and over the scattering surface in (3), which results in iden-
tical re ected amplitude, s′′i = s′iri,j . To keep the average
power of hi(t) be the same as ‖si‖2,let s′′i = si/

√
qi, and

the simpli ed model becomes

hi(t) =

qi∑
j=1

si√
qi

ejkli,j(t). (4)

De ne (xi,j , yi,j) be the coordinate of the jth re ection po-
sition in the ith scattering surface, and the center of grav-
ity of the ith scattering surface as (xi,c, yi,c), where xi,c =∑qi

j=1 xi,j/qi, and yi,c =
∑qi

j=1 yi,j/qi. Let li,c(t) be the
length of the propagation path via (xi,c, yi,c), and

Δli,j(t) = li,j(t)− li,c(t). (5)

Then, the model in (4) becomes

hi(t) =

qi∑
j=1

si√
qi

ejk(li,c(t)+Δli,j(t)),

=

⎛
⎝ si√

qi

qi∑
j=1

ejkΔli,j(t)

⎞
⎠ ejkli,c(t),

= si(t)e
jkli,c(t), (6)

where we assume li,c(t) varies linearly with time (i.e. con-
stant speed), and Δli,j(t) is assumed to be uniform dis-
tributed in [−γλ, γλ]. The parameter γ de nes the size/roughness
of the scattering surface. The larger γ is, the larger/rougher
the surface is. According to the Rayleigh criterion [6], a sur-
face is considered as smooth, if γ is less than 0.25, which re-
sults in the maximum path length difference of a half wave-
length. When γ = 0, this scattering model degenerates
to the specular re ection model. Let φi,j(t) = kΔli,j(t),
which is the time varying phase of the complex amplitude
associated to the (i, j)th path . The time varying amplitude
si(t) can be expressed as

si(t) =
si√
qi

qi∑
j=1

ejφi,j(t),

=
si√
qi

qi∑
j=1

(cos(φi,j(t)) + j sin(φi,j(t)). (7)

When qi is large,
∑qi

j=1 j sin(φi,j(t)) approaches 0. Then,

si(t) ≈ si√
qi

qi∑
j=1

cos(φi,j(t)). (8)

Given γ, φi,j(t) is uniformly distributed in [−2γπ, 2γπ].
The expectation of si(t) is

μs,i = E[si(t)] =
si

2γπ
sin(2γπ), (9)

which is nonzero in general. With multiple scattering clus-
ters, the signal model is

h(t) =

p∑
i=1

hi(t) =

p∑
i=1

si(t)e
jkli,c(t),

=

p∑
i=1

si(t)e
jωit, (10)

where ωit = kli,c(t) is used in the last equation. In other
words, the Doppler frequencies come into the signal via
time varying path lengths.
An example of such a scenario with a single re ection

cluster is given in Figure 1. The corresponding magnitude
and phase of the time varying amplitude is given in Figure 2,
where it can be seen that the amplitudes has approximately a
linear phase, but time varying magnitudes. This observation
coincides with those in [5].
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Fig. 1. Scattering on Rough Surface. (Single cluster p = 1,
the number of re ection points q1 = 100, the re ection
points are uniformly distributed in a circular area with ra-
dius 0.25λ, the number of channel samples N = 500, the
mobile velocity is 10m/s, the distance from BS to the cen-
ter of gravity of the scattering surface is 100 m, the distance
from MS to the center of gravity of the scattering surface is
10 m, and the SNR is 10 dB.)

3. MODELING OF TIME VARYING AMPLITUDES

In (10), each time varying amplitude can be modeled as a
low pass signal, since the time variations of the phases,Δφi,j(t),
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Fig. 2. Time Varying Amplitude due to Scattering Radiation
on Rough Surface (γ = 0.25).

are functions of the mobile velocity, which is slow com-
pared to the channel update rate (sampling rate). An AR(d)
model is proposed to describe the dynamics of the ampli-
tudes, where d is small. For the ith cluster,

si(t+1) =

d∑
n=1

αi,nsi(t−n+1)+vi(t) = α
T
i si(t)+vi(t),

(11)
whereαi = [αi,1, · · · , αi,d]

T , si(t) = [si(t), · · · , si(t−d+
1)]T . The vi(t) is a driving noise with pdf, CN (μv,i, σ

2
v,i).

Note that μv,i �= 0, and so is μs,i.
One method to estimate those above mentioned param-

eters is proposed based the covariance sequences of si(t),
which is rs,i(K) = E[si(t)si(t−K)]. The overline is con-
jugate operation. From (11), one can derive that

rs,i(K) =

d∑
n=1

αi,nrs,i(K − n) + μv,iμs,i. (12)

Given rs,i(K), K = 0, · · · , M − 1, αi and μv,iμs,i can be
estimated using LS, whenM > d+1. Then the mean power
of vi(t), ‖μv,i‖2, can be estimated, since

μv,iμs,i =
‖μv,i‖2

1−∑d

n=1 αi,n

. (13)

Since

rs,i(0) = α
T
i Rs,iαi+2Re{αT

i 1dμs,iμv,i}+σ2
v,i+‖μv,i‖2,

(14)
the variance of the innovation noise, σ2

v,i, can be obtained,
where

Rs,i =

⎡
⎢⎢⎢⎣

rs,i(0) rs,i(1) · · · rs,i(d− 1)
rs,i(−1) rs,i(0) · · · rs,i(d− 2)

...
...

. . .
...

rs,i(−d + 1) rs,i(−d + 2) · · · rs,i(0)

⎤
⎥⎥⎥⎦ .

(15)

In a single scattering cluster scenario, rs,1(K) can be
obtained easily from y, since

ry(K) = rs,1(K)ejω1K for K ≥ 1, (16)

where ry(K) = E[y(t)y(t − K)]. For K = 0, ry(0) =
rs,1(0) + σ2

e . With multiple scattering clusters, the estima-
tion of covariance sequences of each cluster becomes tricky,
since the sinusoidal signals with time varying amplitudes
cannot be decoupled. However, it is still possible to esti-
mate them, for example, by ltering in the frequency do-
main. More details about this will be presented in a future
publication.

4. CHANNEL PREDICTION USING KALMAN
FILTER

De ne the zero-mean time varying amplitudes as sz,i(t) =
si(t) − μs,i. The signal model (10) can be expressed in a
state-space structure as

x(t + 1) = Γx(t) + u(t), (17)
y(t) = c(t)T x(t) + e(t), (18)

where

x(t) = [x1(t)T , · · · , xp(t)
T ]T ,

xi(t) = [sz,i(t), · · · , sz,i(t− d + 1), μs,i]
T ,

Γ = diag(Γ1, · · · ,Γp),

Γi =

⎡
⎢⎢⎢⎢⎢⎣

αi,1 αi,2 · · · αi,d−1 αi,d 0
1 0 · · · 0 0 0

...
0 0 · · · 1 0 0
0 0 · · · 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

,

u(t) = [u1(t)
T , · · · , up(t)

T ]T ,

ui(t) = [vi(t),0
T
d−1, wi(t)]

T ,

c(t) = [c1(t)T , · · · , cp(t)T ]T ,

ci(t) = [ejωc,it,0T
d−1, e

jωc,it]T .

The variance of wi(t), σ2
w,i, should be much smaller than

the variance of vi(t), since wi(t) is the innovation noise for
the mean amplitude which is constant. Then, the prediction
of the h(t + L) based on measurement y is

ĥ(t + L) = c(t + L)H
Γ

Lx̂(t), (19)

where x̂(t) is obtained by the Kalman lter [7]. The ini-
tial covariance matrix Cx = diag(Cx,1, · · · ,Cx,p), Cx,i =
diag([σ2

s,i1
T
d , 0]), and the initial state x(0|0) = 0. The

Doppler frequencies ωc,i is estimated using ESPRIT [8].
The covariance matrix of u(t) is Q = diag(Q1, · · · ,Qp),
Qi = E[ui(t)ui(t)

H ] = diag([σ2
v,i,0

T
d−1, σ

2
w,i]).
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5. PERFORMANCE EVALUATION WITH A
SINGLE CLUSTER

The proposed signal model (10) with single scattering clus-
ter (p = 1) is adopted to evaluate the adaptive channel pre-
dictor in (19). To make the channel to be “easy” or “tough”
to predict, γ is set to be 0.25 and 0.5 respectively. For
each setting, 200 realizations are simulated. The averaged
Normalized Square Error (NSE) over simulations is used to
measure the prediction accuracy, where

NSE =
N · |h(t + L)− ĥ(t + L)|2

yHy
, (20)

which is termed Normalized Mean Square Error (NMSE).
The LMMSE and the LP are also evaluated using the same
data sets [4]. In the adaptive channel predictor, an AR(2)
model is used. The orders of LMMSE and LP are 1. The
results with γ = 0.25 and γ = 0.5 are presented in Fig-
ures 3 and 4 respectively. It can be seen that the adaptive
channel predictor outperforms other methods in both cases.
The LMMSE predictor based on constant amplitude has the
worst performance. This results agree with those usingmea-
surement data. The performance of the adaptive channel
predictor can be further improved by increasing the order
of the AR modeling of the amplitudes or by using another
model structure that better ts data.
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Fig. 3. Performance evaluation using simulated data. ( γ =
0.25, prediction horizon L=5 (around 0.3λ))

6. CONCLUSIONS

Radio waves scattered on rough surfaces is modeled as si-
nusoidal signals with time varying amplitudes. This model
is more realistic than the previously used sinusoidal mod-
eling of a Rayleigh fading channel. An adaptive channel
predictor using sinusoidal modeling with time varying am-
plitudes is proposed, where the time varying amplitude is
modeled as an AR(d) process. The simulation results show
that it outperforms all other methods in case of rougher sur-
faces. The LMMSE predictors based on constant amplitude
has the worst performance among the tested methods.
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Fig. 4. Performance evaluation using simulated data. ( γ =
0.5, prediction horizon L=5 (around 0.3λ))
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