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ABSTRACT 

 
The Bayes principle is applied to the joint model selection 
and parameter estimation of GTD model to explore the prior 
information. An algorithm using RJ-MCMC is designed. It 
not only has better model selection and parameter 
estimation performance than the non-Bayes algorithms, but 
also solves the mixed parameter estimation problem in GTD 
model effectively. The advantage of this algorithm is 
especially evident at low SNR, for short data and with 
closely-spaced components. Simulations verify the 
effectiveness of this algorithm. 
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1. INTRODUCTION 
 
Scattering center model describe the electromagnetic 
characteristic of radar target in optical region, and is widely 
used in radar data compression, target analysis and signal 
processing. The scattering center model based on Geometric 
Theory of Diffraction (GTD model) is a basic scattering 
center model [1]. Extracting the parameters of GTD model 
from radar measurements includes two problems: one is to 
decide how many scattering centers there are on the target, 
i.e., model order selection or model selection, the other is to 
estimate the parameters of each scattering center, i.e., 
parameter estimation. The commonly used model selection 
criteria such as AIC, MDL and MAP are all asymptotically 
effective and their performance degenerates under low SNR 
and short data [2]. Meanwhile, the parameter estimation 
problem of GTD model involves optimizing a high 
dimensional non-linear cost function with mixed (both 
discrete and continuous) parameters and is very difficult to 
solve. 

In this paper, Bayes method [3, 4] is applied in joint 
model selection and parameter estimation problem of GTD 
model. Bayes methods always use high dimensional non-
linear integration which has no closed-form analytical 
solution. The reversible jump Markov Chain Monte Carlo 
(RJ-MCMC) method [5, 6] will be used to solve this 
problem. 

The Bayes based joint model selection and parameter 
estimation of GTD model using RJ-MCMC algorithm has 
many advantages. There are prior information and 
constraints on the parameters of GTD model, which are vital 
in the Bayes method.  Bayes method achieves better 
performance than non-Bayes methods such as ESPRIT and 
MUSIC by exploring the prior information.  RJ-MCMC 
algorithm avoids simplification when calculating the a 
posteriori probability and therefore is more accurate in 
model selection than the asymptotically effective criteria.  
RJ-MCMC algorithm can estimate both the discrete and 
continuous parameters in GTD model at the same time, so it 
avoids the error brought by taking the type parameter as a 
continuous one. 
 
2. JOINT MODEL SELECTION AND PARAMETER 
ESTIMATION OF GTD MODEL BASED ON BAYES 

PRINCIPLE 
 
The target response stimulated by a stepped frequency radar 
can be expressed as follows according to GTD theory [1].  
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where k is the number of scattering centers, i.e., the order of 
the model. ai, ri and i are respectively the scattering 
complex intensity, projective location and geometric type 
parameter of the ith scattering center. We have i=0.5k with 
k {-2,-1,0,1,2} for most dominant scattering centers. fc is 
the starting frequency, f the frequency step and N the 
frequency stepping number. wn is the measured noise in the 
nth pulse which is assumed to be white Gaussian. Equation 
(1) can also be expressed in the matrix form. 
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Now the parameters to be estimated are converted to 
2, , ,

TT T T

k k k k kA . We note the constraints that i [-

,  ] and i [-1,-0.5,0,0.5,1] in GTD model. This prior 
information will be explored by the Bayes method in the 
following to improve the model selection and parameter 
estimation accuracy.  

In the Bayes method, all the unknown parameters are 
supposed to be random variables. The best choice of k 
should maximize the a posteriori probability and the 
estimate of k should minimize the mean square error 
(MMSE estimates).   
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We assume k
2 comes from a conjugate inverse-

Gamma distribution, i.e., 2

0 0~ / 2, / 2k Ig v [6]. The 

distribution of  , , ,k k kk A  can be assumed according to 
the physical meaning of GTD model. 
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where 1 2 H
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D D , 2  is the expected SNR The first 

term is the a priori distribution of 
kA  which is zero mean 

Gaussian with covariance 2

k k
; the second term is the a 

priori distribution of 
k
 which is uniformly distributed on 

, k

k
; the third term is the a priori distribution of 

k
 which is also uniformly distributed on 

1, 0.5, 0, 0.5,1 k

k ; the last term is the a priori 
distribution of k which is a truncated Poisson distribution  
with expected order . If k 0 we have 1

0 0 0 0HA A  and 
2

0 0 1 . 
The a posteriori distribution is  
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The nuisance parameters kA  and k
2 can be integrated 

out from (6). 
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Expression (8) can not be used in (3) and (4) to get the 
solution directly because: the a posteriori probability is 
nonlinear with the unknown parameters and can not be 
integrated analytically; there is still an unknown 
coefficient in (8) so that it can not be directly used in (4). 
RJ-MCMC algorithm provides solution to these problems. It 
sets an ergodic Markov chain , i

i

k i
k  whose stable 

distribution is equal to , , |k kp k Y  and then obtains 
the statistical inference of the parameters from the P 
samples of the chain.  
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3. RJ-MCMC ALGORITHM FOR JOINT MODEL 

SELECTION AND PARAMETER ESTIMATION OF 
GTD MODEL 

RJ-MCMC differs from the MCMC algorithm in that it 
permits the sampling process to jump among different 
subspaces with different model order. Suppose the a 
posteriori probability is p( , k|Y) and the collect of all the 

possible parameter subspaces is max

0

k

kk
k , where 

kmax is the maximum of the possible model order. In each 
step of the iteration, we first decide the proposal distribution 
and the candidate samples from this distribution; then we 
determine whether the candidate samples are acceptable 
according to the accepting probability [5] 
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*, k* are candidate samples and candidate order; , k are the 
samples and order in the previous iteration. q( ) is the 
proposal distribution; it should be easy to sample and be 
nonzero in the support region of p( ).

In each iteration of the RJ-MCMC algorithm, the 
parameters are updated, dead or born according to the 
probability uk, dk, bk, and uk+dk+bk=1 for all ks . 
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where c adjusts the probability between jump and update, 
and usually c=0.5. The flow chart of RJ-MCMC algorithm 
is shown in fig.1 and the update, birth and death move for 
the GTD model will be explained in the following.  

 
Fig.1 Flow chart of RJ-MCMC algorithm 

Suppose we now come to the ith iteration and the 
current model order is k. 

1 Birth Move. In effect if k<kmax. A new scattering 
center is created whose parameters obey ~U(- , ) and 

~DU({-1,-0.5,0,0.5,1}). The collective parameters update 
to (k+1, k+1). The proposal distribution is 
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2. Death Move. In effect if k>0. A scattering center is 
deleted randomly. The collective parameters become (k-1, 

k-1). The accepting probability is   
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3. Update Move. The model order remains the same 
while the scattering center parameters are updated using the 
mixed sampling algorithm [6]. For frequency parameter, the 
accepting probability for the candidate samples is 
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For the nuisance parameters, we have 
2
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It can be proved that no matter what the initial point of 
the Markov chain is, its distribution will converge to 

, |kp k Y  at a uniform geometric rate [6].But there exists 
a transient state before the Markov chain converges, and the 
samples in this transient state should be discarded.   

 
4. SIMULATION RESULTS  

The data is produced according to (1) and we set three 
scattering centers as shown in Table 1 where the first and 
second scattering centers are in the same Fourier resolution 
bin. Radar parameters are set to be N=64, f=30MHz, 
fc=9GHz, 2

RW=0.2N. Hyper-parameters are set to be =3, 
2=1000. SNR is defined as  

2 2

10 110 logSNR A                            (22) 

Table 1 Parameters of the Three Scattering Centers 

 
200 Monte-Carlo simulations are carried out in each of 

the conditions.  
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a) Model selection performance 
The RJ-MCMC algorithm is compared with other three 

algorithms using TLS-ESPRIT for parameter estimation and 
AIC, MDL and MAP criteria for model selection separately.  

Fig.2 is the correct model selection rate at different 
SNR levels. When SNR <2dB, the three algorithms using 
TLS-ESPRIT all have very poor performance. This is 
because both the ESPRIT algorithm and the three model 
selection criteria fail when SNR is low. However, the RJ-
MCMC algorithm achieves the correct selection rate above 
90% even when SNR=-4dB. This verifies its advantage at 
low SNR. When SNR level is high, both the RJ-MCMC and 
the EMAP(Esprit-MAP) algorithm achieves very good 
performance. This is because both of them are based on the 
MAP criteria except that the E-MAP algorithm uses an 
approximation of the a posteriori probability which is only 
valid at high SNR whereas the RJ-MCMC algorithm solves 
the a posteriori  probability without approximation. 

 
Fig.2 Model order selection performance 

b) Parameter estimation performance 
Only the realizations with the correct model order 

decision are used in evaluating the estimation performance. 

 
Fig.3 Estimation performance of frequency parameter 

 
Fig.4 .Correct decision rate of type parameter 

Fig. 3 is the Mean Square Error (MSE) of the 
frequency estimates under different SNR levels. The 
estimation accuracy of RJ-MCMC is better than TLS-
ESPRIT, especially under low SNR and for closely spaced 
scattering center, e.g., scattering center 1. The performance 
of RJ-MCMC is even better than the Cramér-Rao Bound 
(CRB). This is because the CRB is deduced by assuming all 
the unknowns to be non-random parameters [7] whereas the 
RJ-MCMC algorithm takes these unknowns to be random 
variables with known prior distribution. On the contrary, the 
ESPRIT algorithm which takes the unknowns to be non-
random parameters never performs better than the CRB.  

Fig.4 gives the correct decision rate of the type 
parameter. We see that the performance of the RJ-MCMC 
algorithm is close to the lower bound and is better than that 
of TLS-ESPRIT. This simulation is carried out at high SNR 
(since high SNR is necessary for the correct decision of the 
type parameter [7]) so that the advantage of the RJ-MCMC 
algorithm is not as evident as in Fig.3. 

 
5. DISCUSSION 

 
When the SNR level is high, the advantage of the RJ-
MCMC algorithm over the ESPRIT-MAP algorithm 
becomes insignificant whereas its computation complexity 
is still high. So the ESPRIT-MAP algorithm is 
recommended at high SNR level.  

The RJ-MCMC algorithm can also be applied to non-
Gaussian noise and colored noise [8, 9]. This generalization 
will be one of the topics in our future work. 
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