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ABSTRACT
We study the maximum a posteriori probability model order selec-
tion algorithm for linear regression models, assuming Gaussian dis-
tributed noise and coefficient vectors. For the same data model, we
also derive the minimum mean-square error coefficient vector esti-
mate. The approaches are denoted BOSS (Bayesian Order Selec-
tion Strategy) and BPM (Bayesian Parameter estimation Method),
respectively. Both BOSS and BPM require a priori knowledge on
the distribution of the coefficients. However, under the assumption
that the coefficient variance profile is smooth, we derive “empirical
Bayesian” versions of our algorithms, which require little or no in-
formation from the user. We show in numerical examples that the
estimators can outperform several classical methods, including the
well-known AIC and BIC for order selection.

Index Terms— Linear systems, Bayes procedures, modeling,
least mean square methods, parameter estimation

1. INTRODUCTION
1.1. Problem Formulation

Consider the linear regression model

y = Xh + ε (1)

where y ∈ �
N is the vector of observed data, X = [x1 · · ·xn] ∈

�
N×n is a known matrix of n regressors {xj}n

j=1, h = [h1 · · ·hn]T

∈ �
n is the unknown coefficient vector and ε ∼ N (0, σ2I) is a

length N vector of zero-mean Gaussian white noise with variance
σ2. We call (1) the full model and assume that the data are generated
by a model of the form

Mk : y = Xkhk + ε (2)

where nmin ≤ k ≤ n, Xk = [x1 · · ·xk] (i.e., Xk consists of the
first k columns of X ), and hk = [h1 · · ·hk]T . Furthermore, we
make the assumption that the coefficients hj are zero-mean indepen-
dent Gaussian random variables, hj ∼ N (0, γ2

j ). In other words,

hk ∼ N (0,Γk) where Γk = diag[γ2
1 · · · γ2

k]. The model order k is
assumed to be unknown.

We consider the following two classical interrelated problems:

1. The model order selection problem: to correctly detect the
order k, given X and y.

2. The parameter estimation problem: to estimate h as accu-
rately as possible, assuming the order k is unknown.

This work was supported in part by the Swedish Science Council (VR).

1.2. Related Work
Bayesian solutions to the above two problems, under the Gaussian-
ity assumption on the coefficients and the noise, are available in the
literature. In, e.g., [1], the maximum likelihood (ML) model or-
der selection algorithm for the current model was derived, although
not numerically evaluated. In [2], the minimum mean square error
(MMSE) estimate of the frequency function was derived. Within
the same framework, it is easy to derive the MMSE estimate of
h. In [3, 4] simple derivations of the maximum a posteriori (MAP)
model order selection algorithm and the MMSE estimate of h were
presented. These derivations will be the basis of the empirical Bayes
method that we propose, and will be summarized in Sections 2 and
3.

1.3. Contribution of This Work
In the references in the above subsection it is generally assumed
that the noise variance σ2 and the coefficient variances {γ2

j }n
j=1

are known. This assumption is hardly realistic in applications. The
goal of the present article is to present methods which do not require
knowledge of σ2 and {γ2

j }n
j=1. To this end we take an empirical

Bayes approach: we estimate σ2, {γ2
j }n

j=1 from the data and then
use the resulting estimates as if they were the true values. See Sec-
tion 4.

2. OPTIMAL MODEL ORDER SELECTION
Here we review the maximum a posteriori (MAP) probability model
order selection algorithm for the problem posed in Section 1, assum-
ing known σ2, {γ2

j }n
j=1. Note that this model selection rule has been

derived previously in [1]. In the remainder of the paper we will de-
note this specific model selection algorithm BOSS (Bayesian Order
Selection Strategy).

Using Bayes’ Theorem we obtain an expression for the model
posterior probabilities:

P (Mk|y) = P (Mk)
p(y|Mk)

p(y)
.

Since p(y) is independent of the model Mk, the model order which
gives the highest posterior probability model is

MAP : k̂ = arg max
k=nmin,...,n

P (Mk)p(y|Mk). (3)

If nothing is known about the model prior probabilities P (Mk), we
will assume that they are equal and, of course, that they sum up to
one:

P (Mk) =
1

n − nmin + 1
, k = nmin, . . . , n (4)

(this is common practice [5]). Furthermore, under the assumption
that Mk is the data generating model we have

y|Mk ∼ N (0, Qk)
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where Qk = XkΓkXT
k + σ2I , Γk = diag[γ2

1 · · · γ2
k]. So,

p(y|Mk) =
1√
2π

N

1

|Qk|1/2
exp

„
−1

2
yT Q−1

k y

«
. (5)

We obtain BOSS by using (4) and (5) to compute (3). One can show
(see, e.g., the discussion around Equation (37) in [6]) that the order
with the highest a posteriori probability is also the most likely to be
the correct order.

Note that (using the identity |I + AB| = |I + BA|)

|Qk| =
˛̨̨
XkΓkXT

k + σ2I
˛̨̨
= σ2N

˛̨̨
˛XT

k XkΓk

σ2
+ I

˛̨̨
˛ (6)

and (using the matrix inversion lemma)

Q−1
k =

“
XkΓkXT

k + σ2I
”−1

=
1

σ2
I − 1

σ4
Xk

„
Γ−1

k +
1

σ2
XT

k Xk

«−1

XT
k .

(7)

The expressions in (6) and (7) can be used to boost the computa-
tional efficiency: XT

k Xk is much faster to evaluate than XkXT
k if

N � n (one should also exploit the fact that Γk is diagonal). The
computational complexity can be further reduced by noting that

XT
k Xk =

»
XT

k−1

xT
k

–
[Xk−1 xk] =

»
XT

k−1Xk−1 (xT
k Xk−1)

T

xT
k Xk−1 xT

k xk

–

and that XT
k−1Xk−1 is evaluated when computing p(y|Mk−1).

Also, a well-known lemma on the inverse of partitioned matrices
(see, e.g., Lemma A.2 in [7]) can be used to compute (7) iteratively.
Define Zk =

`
Γ−1

k + 1
σ2 XT

k Xk

´
(see (7)). Then

Z−1
k =

»
Z−1

k−1 0k−1

0T
k−1 0

–

+

"
−Z−1

k−1

(�T
k�k−1)T

σ2

1

# h
−�

T
k�k−1

σ2 Z−1
k−1 1

i
�

T
k
�k

σ2 + 1
γ2

k
− 1

σ4 xT
k Xk−1Z

−1
k−1(x

T
k Xk−1)T

,

so the matrix inversion in (7) needs only be computed directly for
k = nmin.

3. THE MMSE ESTIMATE OF h
In this section we describe what we will denote the BPM (Bayesian
Parameter estimation Method) by deriving the MMSE estimate of h
under the assumption that one of the models {Mk}n

k=nmin
in (2) gen-

erated the data. The MMSE estimate equals the conditional mean:

ĥMMSE = E[h|y] =

nX
k=nmin

P (Mk|y)E[h|y,Mk]. (8)

Note that

P (Mk|y) = P (Mk)
p(y|Mk)

p(y)
=

P (Mk)p(y|Mk)
nP

j=nmin

P (Mj)p(y|Mj)
. (9)

By inserting (9) in (8) we get

MMSE : ĥMMSE =

nP
k=nmin

P (Mk)p(y|Mk)E[h|y,Mk]

nP
k=nmin

P (Mk)p(y|Mk)
. (10)

We can use (4) and (5) in (10). What remains to evaluate (10) and
get the BPM is then to compute E[h|y,Mk].

Clearly, assuming that the model Mk generated the data, hj =
0 for j > k, so it is sufficient to find E[hk|y,Mk]. Under Mk, hk

and y are jointly Gaussian:»
y
hk

–
|Mk ∼ N

„
0,

»
Qk XkΓ

T
k

ΓkXT
k Γk

–«
.

Applying a standard result (Lemma B.17 in [7], for example), the
conditional mean evaluates to

E[hk|y,Mk] = ΓkXT
k Q−1

k y. (11)

We now obtain the BPM by inserting (4), (5) and (11) into (10).

4. NEW EMPIRICAL BAYESIAN ESTIMATORS
The weakness of BPM and BOSS is that they require knowledge of
{γ2

k}n
k=1, σ2. In practice, these variances are likely to be unknown.

This problem can be dealt with in different ways.
One possibility is to assign hierarchical distributions to the un-

known variances and set the resulting hyperparameters to some val-
ues (e.g., assume that σ2 ∼ D(a) where D denotes some distribution
and a is a hyperparameter). The resulting expressions, correspond-
ing to (3) and (10), can typically not be solved analytically. Thus one
has to resort to numerical approaches, such as Markov Chain Monte-
Carlo (MCMC) methods. For a related example, see [8]. This type
of numerical approach is generally computationally intensive. Fur-
thermore, it is not clear at what hierarchical level one should stop
the hyperparameterization or what values should be assigned to the
hyperparameters at the final level: In the above example, should a
be set to a specific value, or should we assign yet a distribution for
a?

Instead, we propose to use an empirical Bayes approach. In this
approach the unknown prior (hyper)parameters are estimated from
the available data. The so-obtained estimates of {γ2

k}n
k=1, σ2 can

then be used for inference, i.e. be inserted into (3) and (10) as if they
were the true values. This voids the optimality of BOSS and BPM,
as the variances {γ2

k}n
k=1, σ2 are a priori parameters, which should

not depend on the data. Nevertheless, estimation of {γ2
k}n

k=1, σ2

appears to be an attractive, pragmatic way of handling the situation
when these parameters are completely unknown.

We will base our estimates of {γ2
k}n

k=1, σ2 on the least squares
(LS) estimator,

ĥLS,k = (XT
k Xk)−1XT

k y, (12)

of the full model (1) (i.e., k := n in (12)). Note that this requires
N ≥ n and that X is full rank, so these conditions are necessary for
our empirical Bayes methods to work.

The estimation of σ2 is straightforward: an unbiased, consistent
estimate of σ2 can be obtained by taking [4]

σ̂2 =
1

N − n
‖y − XĥLS,n‖2. (13)

The estimation of {γ2
k}n

k=1 is more challenging. First, we have
only a single realization of y. This also means that we have only one
single realization of h to use for estimation of {γ2

k}n
k=1. In other

words, only one sample hk is indirectly available (hk is unknown,
and has to be estimated from y) for the estimation of the variance γ2

k .
It is obvious that some a priori information is necessary to regularize
this problem. Second, if the true order is k, the γ2

j , j > k can not be
estimated at all, as there is no data available (hj = 0 when j > k). If
this problem were disregarded we would likely end up with severely
underestimated values of γ̂2

j for j > k, which would give a high risk
of overestimation of the model order.

Because of the above, it is likely that any estimates of {γ2
k}n

k=1

will deviate rather much from their true values. Fortunately, BOSS
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and BPM appear to be relatively insensitive to mismatching values
of {γ2

k}n
k=1 (see, e.g., [4] and the numerical examples herein).

To cope with the first of the above mentioned problems it is nec-
essary to impose some assumptions on {γ2

k}n
k=1. We will make the

(in our opinion, reasonable) assumption that {γ2
k}n

k=1 is a smooth
sequence, i.e. γ2

k − γ2
k−1 does not vary a lot with k. In the next

subsections we describe two ways of exploiting this assumption. To
cope with the second problem above, our solution is to impose a
threshold b, such that always γ̂2

k ≥ b > 0. In this manner, we need
to define the degree of smoothness and the threshold b. We will se-
lect the threshold b as a fraction of the largest squared magnitude
element in the full model LS estimate ((12) with k := n), i.e.

b := bf max{|ĥLS,1|2, |ĥLS,2|2, . . . , |ĥLS,n|2}. (14)

As a rule of thumb, we recommend bf = 0.1. In the following two
subsections we describe ways of exploiting the “smoothness con-
straint”. Our proposed approaches require little or no a priori infor-
mation.

4.1. Estimation of {γ2
k}n

k=1 by Parameterization

In this approach we assume that {γ2
k}n

k=1 can be expressed as a lin-
ear combination of a relatively small number of known basis vectors,
as follows:

γ = Ψα (15)

where γ = [γ2
1 · · · γ2

n]T , Ψ is a known n × r matrix and α is
an unknown length r vector. The columns of Ψ should be a basis
for “likely” variance profiles for {γ2

k}n
k=1 and generally r should

be small compared to n. (In a communication application, e.g., it
might be known that {γ2

k}n
k=1 is exponentially decaying [9], and Ψ

could then contain one or a few columns with different degrees of
exponential decay.) If nothing at all is known about {γ2

k}n
k=1, then

Ψ can be constructed from the first r basis functions in a discrete
Fourier series expansion of γ (in this case, r is the user parameter):

[Ψ]j,1 = 1

[Ψ]j,k =

j
cos

`
k
2
(j − 1) 2π

n

´
k even

sin
`

k−1
2

(j − 1) 2π
n

´
k odd and ≥ 3

(16)
where j = 1, . . . , n, k = 1, . . . , r and r is odd. Using a truncated
Fourier series as basis may seem ad hoc at first glance, but we find
it attractive for many reasons: the basis functions are orthogonal and
the resulting variance profile is smooth. Additionally, by choosing
the number of basis functions r, we can directly influence the amount
of variation in the variance profile γ .

Now, the problem is reduced to that of estimating α, i.e. the
dimensionality of the problem is reduced from n to r. Note that

E[|hj |2] =

nX
k=nmin

P (Mk)E[|hj |2|Mk] = qjγ
2
j

where qj =
Pn

k=max(j,nmin)
P (Mk), because under Mk, hj = 0

for j > k, and hj has variance γ2
j if j ≤ k. By replacing E[|hj |2]

in the above equation by the squared norm of the corresponding el-

ement of the full model LS estimate ((12) with k := n), |ĥLS,j |2,
and using (15) we can estimate α from the following constrained LS
expression:

min
�,Ψ�≥0

‚‚‚‚‚‚‚
2
64
|ĥLS,1|2

...

|ĥLS,n|2

3
75−

2
64

q1Ψ1,1 · · · q1Ψ1,r

...
...

qnΨn,1 · · · qnΨn,r

3
75α

‚‚‚‚‚‚‚
2

. (17)

The constraint in (17) guarantees that all γ̂2
j ≥ 0. The above expres-

sion can be easily and efficiently solved by quadratic programming
(use, e.g., quadprog in Matlab).

One might inquire as to why the threshold b is not used already
in (17) (and (18) below). The reason is that the thresholds γ ≥ 0 and
γ̂2

k ≥ b serve different purposes: γ ≥ 0 used in (17), (18) takes care
of the physical requirements on the variances, whereas the threshold
b is a way to cope with the lack of data for estimation of {γ̂2

k}n
k=1.

We found that this way of imposing thresholds on {γ̂2
k}n

k=1 gave the
best numerical performance.

4.2. Estimation of {γ2
k}n

k=1 by Penalization
The problem we would like to solve—that of estimating {γ2

k}n
k=1

using the LS estimate ĥLS,n from a single data realization—is an ill-
conditioned problem. Tikhonov regularization [10] is a commonly
used method for solving ill-posed problems. The regularization con-
sists of an additive penalty term which depends on the parameter of
interest. This penalty can be designed to, e.g., shrink the estimate to-
wards zero, or limit its variability. Using the a priori assumption that
{γ2

k}n
k=1 is a smooth sequence, we impose a penalty on its second

order difference and estimate it from

γ̂ = arg min
�≥0

‖γ − [|ĥLS,1|2 · · · |ĥLS,n|2]T ‖2 + λ‖Lγ‖2. (18)

Here, L =

2
64

1 −2 1 0
. . .

. . .
. . .

0 1 −2 1

3
75 ∈ �

(n−2)×n is the sec-

ond order difference matrix and λ is a user parameter which deter-
mines the amount of smoothing. Equation (18) can be efficiently
solved using quadratic programming. λ should be set to a low value
if {γ2

k}n
k=1 is believed to have large variations, and a high value if

{γ2
k}n

k=1 is believed to be very smooth (the extreme case λ = ∞
forces γ2

k − γ2
k−1 to be constant with respect to k). Alternatively, λ

can be selected in a fully automatic manner (i.e., without any user
parameters) by using, e.g., generalized cross-validation (GCV). An
efficient implementation of the GCV for the problem under consid-
eration is given in [11].

5. NUMERICAL EXAMPLES
We evaluate the performances of the methods by means of Monte-
Carlo simulations. The performance of BOSS (3) is measured in
terms of the percentage of correctly selected orders. For the evalua-
tion of BPM (10) we use the empirical MSE of the coefficient esti-

mates: M−1 PM
m=1 ‖ĥ

(m)−h(m)‖2, where ĥ
(m)

and h(m) denote
the estimated and true coefficient vectors (zero-padded if necessary)
for realization number m. M is the total number of Monte-Carlo
runs and we choose M = 105.

For each Monte-Carlo trial we generate data from a model Mk

where the order k is chosen uniformly at random between nmin = 1
and n = 30 (these limits are supplied to the estimators). We set
N = 50. Our regressor matrix X is composed of i.i.d. N (0, 1)
elements. The true variance profiles, {γ2

k}n
k=1 are constructed from

(15) where the first column of Ψ consists of only ones [1 · · · 1]T , the
second is exponentially decaying [ν1e

−0.4 · · · ν1e
−0.4n]T and the

third is exponentially increasing [ν2e
0.4 · · · ν2e

0.4n]T . The normal-
ization factors ν1 and ν2 are set such that all columns in Ψ have a 2-
norm equal to n. The vector α has independent squared N (0, 1) ele-
ments (i.e., each element is generated from a χ2(1)-distribution). Fi-
nally, the so generated {γ2

k}n
k=1 are normalized such that ‖γ‖2 = 1.

Naturally, these choices are somewhat arbitrary (as any specific nu-
merical example has to be), but having compared with other exam-
ples we believe this to show a fair comparison of the considered
methods.

We consider the following methods: (a) The well-known cor-
rected (for short data sequences) information criterion by Akaike
(AICc) [12] for order selection (for parameter estimation we use LS
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Fig. 1. Model order selection performance: Percentages of correctly
selected order. (The small plot is a closeup.)
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(12) with the AICc order); (b) The well-known Bayesian informa-
tion criterion (BIC) [13] for order selection (for parameter estima-
tion we use LS (12) with the BIC order); (c) BOSS/BPM ((3)/(10))
with knowledge of the true {γ2

k}n
k=1, σ2; (d) Empirical BOSS/BPM

using σ̂2 from (13) and estimating {γ2
k}n

k=1 as in Section 4.1 with
the true Ψ; (e) Empirical BOSS/BPM using σ̂2 from (13) and es-
timating {γ2

k}n
k=1 as in Section 4.1 with Ψ consisting of the first

r = 3 discrete Fourier series from (16); (f) Empirical BOSS/BPM
using σ̂2 from (13) and estimating {γ2

k}n
k=1 as in Section 4.2 with λ

chosen using GCV [11].
For all empirical Bayes methods we use bf = 0.1 in (14) to

compute the lower threshold b for {γ̂2
k}n

k=1, such that all γ̂2
k < b

from (17), (18) are set to b instead. In simulations not detailed here
we observed that the exact choice of bf is not critical for the perfor-
mance.

In Figure 1 we study the model order selection performances
and in Figure 2 we study the coefficient estimation performances.
We observe that the empirical BOSS/BPM based methods give a
higher performance than AICc and BIC does (generally about 0.5 to
1 dB better, and sometimes significantly more). Also, the differences
between the different empirical Bayesian methods are very small.

By estimating σ2, {γ2
k}n

k=1 we lose around 0.5 to 1 dB from the
performance of the optimal BOSS/BPM where these parameters are
known. We have obtained similar results from many other numerical
examples which are omitted here due to space constraints.

6. CONCLUSIONS
We have studied linear regression with an unknown model order as-
suming zero-mean Gaussian noise and a zero-mean Gaussian dis-
tributed coefficient vector. Under this model we have derived em-
pirical Bayesian versions of the maximum a posteriori probabil-
ity model order selector and the MMSE coefficient vector estimate.
These empirical Bayesian methods have been shown to outperform
the classical approaches AICc and BIC, both in model selection
and in coefficient estimation examples. Since our methods have
low computational complexity and show very good performance, we
consider them attractive alternatives in the context of the model (2).

Code (in Matlab) for the methods presented here is available at
www.it.uu.se/katalog/ys/software/empBOSS_BPM.
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