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ABSTRACT

Recently, certain solutions have been proposed to solve the common
poles estimation problem in a multichannel Exponentially Damped
Sinusoidal (EDS) signal. In this work, we tackle the closely related
problem consisting of the estimation of the complex amplitudes as-
sociated to the common poles of a multichannel EDS signal. Our ap-
proach is based on the estimation of an oblique projector on the space
of the estimated/common poles along the space of the unknown/non-
common poles. We derive three projection/estimation schemes. The
rst one is based on a sequential (channel by channel) processing of

the data while the others are based on joint estimation of the complex
amplitudes.

1. INTRODUCTION

Very few works have been proposed to solve the problem of the es-
timation of the common poles of a multichannel EDS signal with
more than two channels. Nevertheless, this problem is a typical Sig-
nal Processing problem and is at the heart of biomedical signal anal-
ysis. Recently, two approaches have been proposed. The rst one is
based on shift-invariance of the signal subspace [3] and the second
one is based on a root-version of a multichannel MUSIC algorithm
[4]. Here, we propose several algorithms to estimate the complex
amplitudes associated only to the common poles. Our approach is
based on oblique projection [1, 2] of the noisy channel output. So,
assume that we have estimated the common poles by one of the refer-
enced techniques, we can compute the noise subspace associated to
these poles. This quantity is suf cient to compute an orthogonal pro-
jector, but not oblique projector since the latter depends also on the
to unknown non-common poles in each channel. We propose here a
methodology to estimate an oblique projection and we derive three
estimation schemes. In addition, we discuss the effect of an oblique
projector on the noise and we compare the derived algorithms in the
context of monte-carlo simulations.

2. MULTI-CHANNEL EDS MODEL

De ne the noise-free N -sample EDS signal in the k-th channel ac-
cording to

x
(N)
k =

�
xk(0) . . . xk(N − 1)

�T
= Z̄(N)ak + Z

(N)
k bk (1)

where xk(n) denotes the n-th sample of the k-th channel and
ak = [a1,k . . . aM̄,k]

T and bk = [b1,k . . . bMk,k]
T are the complex

amplitude vectors constituted by the common complex amplitudes
am,k = sm,ke

iφm,k and the ”non-common” complex amplitudes
bm,k = gm,ke

iϕm,k and

Z̄(N) =

�
��

1 1 . . . 1
...

...
...

z̄N−1
1 z̄N−1

2 . . . z̄N−1
M̄

�
��
N×M̄

(2)

contains the common poles z̄m = ed̄m+iω̄
(c)
m while

Z
(N)
k =

�
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1 1 . . . 1
...

...
...

zN−1
1,k zN−1

2,k . . . zN−1
Mk,k

�
��
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(3)

is the Vandermonde matrix containing the non-common poles of the
k-th channel. A well-known Vandermonde-type decomposition of
the Hankel channel matrix

Hk =

�
����

xk(0) xk(1) . . . xk(L− 1)
xk(1) xk(2) . . . xk(L)

...
...

...
xk(N − L− 1) xk(N − L) . . . xk(N − 2)

�
����

(N−L)×L

(4)

associated to the k-th channel is given by

Hk = Z̄
(N−L)AkZ̄

(L)T + Z
(N−L)
k BkZ

(L)
k

T
(5)

with Ak = diag(ak) and Bk = diag(bk). L represents here a win-
dow parameter chosen according to L ≤ N/2.

3. THE COMMON POLE ESTIMATION PROBLEM

The common poles estimation problem can be algebraically de-
scribed in the following manner. Assume that ∀k, R(Z̄(N)) and
R(Z

(N)
k ) intersect trivially (= {0}), then we look for the intersec-

tion ofK spaces de ned by

K	
k=1

R

�
Z̄(N) Z

(N)
k

�

= R



Z̄(N)



. (6)
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whereR(A) denotes the column range space of matrix A.
Assume that, we have solved this problem (cf. references [3, 4])

and one needs to estimate the complex amplitudes associated to the
set of the common poles. To answer this question, we propose in the
following section three algorithms.

4. ESTIMATION ALGORITHMS

4.1. Sequential-algorithm

The Sequential-algorithm, denoted in short Seq-Algo, can be de-
scribed in the following manner.

1) For each channel, compute the channel matrix Hk de ned in
expression (4).

2) Assume that the common poles have been estimated and form
the orthogonal projector P⊥c = I − Z̄

(L)Z̄(L)† where symbol
† denotes the Moore-Penrose pseudo-inverse. Next, de ne the
weighted channel matrix according to

H̄k = P
⊥
c Hk (7)

3) Now, decompose matrix H̄k through the Singular Value De-
composition (SVD) according to

H̄k = UkΣk
�
Vk V̄k

�H
(8)

where Vk (resp. V̄k) is an L × Mk (resp. L × (L − Mk))
unitary matrix.

4) Compute the following (L× L) oblique projector

Ψk = Z̄
(L)

�
P̂⊥k Z̄

(L)
�†

(9)

where P̂⊥k = V̄
∗
k V̄

T
k .

5) Minimize the Least-Squares (LS) criterion

min
Ak

���Ψkx(L)
k − Z̄(L)ak

���2

(10)

by considering the following minimum norm solution:

ak = Z
(L)�
k x

(L)
k . (11)

where Z(L)�
k = Z̄(L)†Ψk is the oblique pseudo-inverse [1, 2].

Note that a fast computation, ie., without pseudo-inversion of

matrix Z̄(L), can be ak =
�
P̂⊥k Z̄

(L)
�†
x
(L)
k .

We can make the following remarks on this algorithm.

• First, observe that at the rst step, the orthogonal projection of
the channel matrix is given by

H̄k = P
⊥
c Hk =

�
P⊥c Z

(L)
k

�
BkZ

(L)
k

T
. (12)

As the left Vandermonde basis is corrupted by the projection,
the right dominant singular basis provides a basis ofR(Z(L)

k ).
Note that in the noisy case, we can easily show that the orthog-
onal projection does not destroy the whiteness of the additive
noise.

• At the last step, we proceed vector x(L)
k by an oblique pro-

jector which leaves unchanged the desired quantities while the
unknown quantities are rejected according to

Ψkx
(L)
k = Z̄(L)

�
P̂⊥k Z̄

(L)
�† �

Z̄(L)ak + Z
(L)
k bk

�

= Z̄(L)ak.

since by expanding term
�
P̂⊥k Z̄

(L)
�†

, it comes

Z̄(L)
�
Z̄(L)H P̂⊥k Z̄

(L)
�−1

Z̄(L)H P̂⊥k Z̄
(L)

� �� 	
I

ak = Z̄(L)ak,

Z̄(L)
�
Z̄(L)H P̂⊥k Z̄

(L)
�−1

Z̄(L)H P̂⊥k Z
(L)
k� �� 	

0

bk = 0.

The number of poles that can be estimated has to satisfy:
rank(H̄k) =Mk ≤ L.

4.2. Block-algorithm

In this section, we introduce a second algorithm, called Block-Algo
which is based on the joint decomposition of all the channel matri-
ces. Its algorithmic description is given below.

1) Let H be the Block-Hankel channel matrix containing the K
channel matrices, de ned by

H =



��
H1

...
HK



��
K(N−L)×L

. (13)

2) Assume that the common poles have been estimated and form
the orthogonal projector P⊥c = I − Z̄(L)Z̄(L)†. Next, de ne
the weighted channel matrix according to

H̄ = (I ⊗ P⊥c )H (14)

where ⊗ de nes the Kronecker product.

3) Now, decompose the weighted channel matrix through the
SVD according to

H̄ = UΣ
�
V V̄

�H
(15)

where V (resp. V̄ ) is an L ×
��

kMk
�

(resp. L × (L −��
kMk

�
)) unitary matrix.

4) Compute the following oblique projector

Θ = Z̄(L)
�
P̂⊥Z̄(L)

�†
(16)

where P̂⊥ = V̄ ∗V̄ T .
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5) Minimize the LS criterion min{a1...aK}
���ΘX − Z̄(L)A

���2
where A = [a1 . . . aK ], by considering the following minimal
norm solution:

A = Z̄(L)†ΘX (17)

with X = [x
(L)
1 . . . x

(L)
K ]. Note that a fast computation,

ie., without pseudo-inversion of matrix Z̄(L), can be A =�
P̂⊥Z̄(L)

�†
X .

The number of poles that can be estimated has to satisfy:
rank(H̄) =

�K

k=1Mk ≤ L.

4.3. Sum-Algorithm

We propose a last algorithm, called Sum-Algo, which is based on
the computation of the sum of the channel matrices over the channel
index. Its algorithmic description is given below.

1) Compute matrices Hk for k ∈ [1 : K]. Based on these set of
matrices, compute

H =
K�
k=1

Hk. (18)

2) Assume that the common poles have been estimated and form
the orthogonal projector P⊥c = I − Z̄Z̄†. Next, de ne the
weighted channel matrix given by

H̄ = P⊥c H (19)

3) Follow Step 3-5 of the Block-Algorithm

The number of poles that can be estimated has to satisfy:
rank(H̄) =

�K

k=1Mk ≤ L. Clearly, this algorithm is less ex-
pensive than the two previous one.

5. EFFECT OF AN OBLIQUE PROJECTOR

Consider the noisy signal de ned by

y
(L)
k = x

(L)
k + σn

(L)
k (20)

where σ ∈ R
+, n(L)

k is a zero-mean Gaussian white vector noise.

Apply an oblique projector on signal (20) according to Ψky
(L)
k .

Then, de ne the noise gain [1] associated to the previous model ac-
cording to

ρ =
1

L
tr(Γk) (21)

where Γk is the noise covariance. For model (20), we have ρ = σ2

and for signal Pcy
(L)
k , obtained by orthogonal (instead of oblique)

projection ontoR(Z̄), it comes

ρortho =
σ2

L
tr(Pc) = σ

2 M̄

L
. (22)

As M̄ < L, we have ρortho < ρ. This means that for nite L,
it is bene cial to work in a subspace of reduced dimension. For an
oblique projector the noise covariance is given by Γk = σ2ΨkΨ

H
k .

As an oblique projector is a de cient matrix, we can consider the
truncated SVD of the Hermitian matrix ΨkΨHk according to

ΨkΨ
H
k =

�
Q ×

� �D2 0
0 0

	�
QH

×

	
(23)

then the noise gain is given by

ρobli =
σ2

L
tr(ΨkΨ

H
k ) =

σ2

L
tr(QHΨkΨ

H
k Q) (24)

=
σ2

L
tr(D2) =

σ2

L

M̄�
�=1

1

sin(θ�)2
≥ ρortho. (25)

These expressions are obtained by remarking that the trace op-
erator is invariant under unitary transformations and the singular
values of an oblique projector are relied to the canonical angles
θ� ∈ [0 : π/2] between R(Z̄) and R(Zk) [1, 2]. If these spaces
are mutually orthogonal then ρobli is near to its lower bound, ie.,
ρobli ≈ ρortho. If R(Z̄) and R(Zk) are close then ρobli is large
and far from its minimal bound. In this case, the noise term may
increased signi cantly. In other words, one observes that, contrary
to the orthogonal projection, the oblique projection mitigates com-
plectly the interference due to the non-common poles of the channel
but may increase the additive noise term effect, depending on the
canonical angle betweenR(Z̄) andR(Zk).

6. NUMERICAL SIMULATIONS

We consider the following two-channels case y1(n) = c1(n) +
zn1,1+z

n
2,1 and y2(n) = c2(n)+zn1,2 where c1(n) = s1,1eiφ1,1 z̄n1 +

σn1(n) and c2(n) = s1,2e
iφ1,2 z̄n1 + σn2(n). To com-

pare the derived methods, we compute the ”ideal” estimation
of the common amplitudes according to a1,1 = s1,1e

iφ1,1 =

Z̄(N)†
�
c1(0) . . . c1(N − 1)

�T
and a1,2 = s1,2e

iφ1,2 =

Z̄(N)†
�
c2(0) . . . c2(N − 1)

�T
. So, in the ”ideal” case, we

assume that there is no non-common poles which disturb the
estimation of the common poles. Inversely, we consider a
”naive” solution where the non-common poles are simply ignored,
given by a1,1 = Z̄(N)†

�
y1(0) . . . y1(N − 1)

�T
and a1,2 =

Z̄(N)†
�
y2(0) . . . y2(N − 1)

�T
. The performance criterion is

the Mean Squares Error (MSE) averaged over 500 experiments and
the desired parameters are the real amplitudes and the initial phases
associated to the common pole: (s1,1, φ1,1), in the rst channel and
(s1,2, φ1,2), in the second channel. In practice, the common poles
are estimated by one of the methods presented in [3, 4]. However,
in this simulation, we prefer to assume that the common poles are
error-free to focus this study only on the performance of the pro-
posed schemes. The analysis window size is N = 50 samples. We
consider three scenarios.

6.1. Scenario 1: all the poles are largely spaced

In the rst scenario, we consider that all the poles are largely spaced.
On Fig. 1, we have reported the MSE for the complex amplitudes
associated to the common poles in the two channels versus the SNR.
We can see that all the three algorithms are equivalent in this con-
text. As the Sum-Algo has the lowest complexity cost, this method
is preferable for this scenario. Note that the ”ideal” method has a
lower variance which shows that our techniques are not optimal in
this sense. However, they provide satisfactory results in comparison
to the ”naive” approach which is lower-bounded at high SNR, due to
the interference of the non-common poles.
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Fig. 1. MSE Vs. SNR [dB] for z̄1 = ei−0.02, a1,1 = 1, a1,2 =
2ei

π
3 , z1,1 = e1.4i−0.015, z2,1 = e1.7i−0.02 and z1,2 = e0.5i−0.01.

6.2. Scenario 2: the non-common poles are closely spaced

In the second scenario, we consider that the non-common poles are
closely spaced. According to Fig. 2, the Block-Algo and Seq-Algo
have an equivalent accuracy but the Sum-Algo is less ef cient since
the summation of closely spaced sinusoids can be problematic. Here
again, the ”ideal” method has a lower variance and the ”naive” one
is lower-bounded at high SNR.
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Fig. 2. MSE Vs. SNR [dB] for z̄1 = ei−0.02, a1,1 = 1, a1,2 =
2ei

π
3 , z1,1 = e0.5i−0.01, z2,1 = e0.6i−0.01 and z1,2 = e0.7i−0.01.

6.3. Scenario 3: one non-common pole and the common pole are
closely spaced

In this last scenario, we consider that one non-common pole and the
common pole are closely spaced. We have reported the MSE with
respect to the SNR on Fig. 3. As we can note the Sum-Algo is
the less ef cient method. The Block-Algo and the Seq-Algo show

similar accuracy for the rst channel but we can note that the Seq-
Algo is a better choice for the second channel.
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Fig. 3. MSE Vs. SNR [dB] for z̄1 = ei−0.01, a1,1 = 1, a1,2 =
2ei

π
3 , z1,1 = e1.1i−0.01, z2,1 = e1.7i−0.02 and z1,2 = e0.4i−0.015.

In conclusion, we can see that the ”naive” approach where we
simply ignore the interference is not practicable. Consequently, we
have derived three algorithms. In a computational point of view,
the less complex is the Sum-Algo since its complexity cost is in-
dependent of the number of channel. This algorithm has the lower
accuracy. The two other algorithms have similar complexity costs
(the rst one being slightly less expensive than the second) but the
Seq-Algo seems a little bit more ef cient than the Block-Algo, es-
pecially in dif cult scenario as for closely spaced poles. In addition,
with the Seq-Algo, the maximal number of poles that can be esti-
mated is higher than with the two other algorithms.

7. CONCLUSION

In this paper, we have designed three algorithms which allow the es-
timation of the complex amplitudes associated to the common poles
of a multichannel EDS model. Our solution is based on oblique pro-
jection of the noisy observation in each channel or in a block fashion.
At our best knowledge, there is no concurrent method to solve this
problem.
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