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ABSTRACT

This paper studies the approximation of continuous functions in sub-
sets of all causal and stable transfer functions. Such approximations
play a central roll in filter design, filter bank analysis, and in sam-
pling, since any filtering can be considered as a kind of approxima-
tion in a space defined by the filters. The present paper studies in
particular the consequences resulting from the causality and stabil-
ity constrain imposed on the filter process. It is shown that there
exists no linear approximation method which is also causal and sta-
ble. Only if either the causality or the stability constrain is left out, a
linear approximation method may exist.

Index Terms— Approximation methods, Causality, Filtering,
Stability

1. INTRODUCTION

The approximation by causal and stable transfer functions is closely
related to any kind of filter problem and therefore it appears fre-
quently in signal processing applications. We give two (out of many)
well known examples:
1) Filterbank representation [1, 2]: Consider the approximation
of a desired filter characteristic f(ejω) by means of a filter bank
{ϕk}∞k=1 of the form

(SNf)(ejω) =
� N

k=1 ck(f, N) ϕk(ejω) (1)

with certain numbers ck(f, N), 1 ≤ k ≤ N which are uniquely
determined by the function f and where the normalized frequency
is in the range ω ∈ [−π, π). From such an approximation, we re-
quire that the approximation error ‖f − SNf‖∞ decreases as the
approximation degree N is increased, and that all individual filter-
bank stages ϕk are causal and stable. Moreover, to obtain a simple
representation of the filter bank, the coefficients ck(f, N) should de-
pend linearly on f .
2) Sampling: Recent approaches [3, 4] to the representation of a sig-
nal f by means of a sequence of numbers show that the sampling
procedure can be considered as an approximation of f in a certain
(Hilbert) space spanned by a number of basis functions ϕk as in
(1). Then the coefficients ck(f) are the "samples" of f . Thus, the
sampling can be considered as a projection onto a certain subspace
of the signal space. Also in this case, we require that the sampling
f �→ ck(f) is a linear mapping and that the reconstruction of the
signal f from the samples ck has the form (1) with certain basis
functions ϕk. Moreover, the reconstructed signal SNf should be
causal and bounded, i.e. supN∈N

‖SNf‖∞ < ∞.
Thus in both cases, we require the linearity of the coefficients

ck(f, N) with respect to f . This is mainly due to practical constrains
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in order that a practical feasible algorithm is obtained. Moreover,
the approximation SNf should represent a causal function (due to
physical considerations) and the maximum value ‖SNf‖∞ ought to
be uniformly bounded for all N (stability). However, this paper will
show that there exists no approximation method (1) which has all
three properties: stability, causality and linearity. However, it is also
discussed that a) there exist stable and causal methods but which
are non-linear, and b) that there exist stable and linear methods but
which are non-causal. Thus, one can always have only two out of
the three desired properties stability, causality, and linearity.

In [5] one special causal filterbank {ϕk}∞k=1 was considered,
and it was shown that the corresponding approximation SNf di-
verges for some continuous transfer functions f as N →∞, i.e. the
corresponding causal and linear filter bank (1) is not stable. Here,
this result is generalized and it will be shown (cf. Theorem 3) that
this property holds for every causal filter bank of the form (1) in
which the coefficients ck(f, N) depend linear on the function f .

The outline of the paper is as follows. After a clarification of
the notations, Section 2 gives a more detailed problem statement.
Section 3 discusses some positive results on non-linear and causal
approximations and on linear and non-causal methods. Afterwards,
Section 4 investigates causal approximation methods. The paper
closes with a discussion of the results in Section 5.

2. PROBLEM STATEMENT AND MOTIVATION

2.1. Notations

The set of all trigonometric polynomials on the unit circle T =
{z ∈ C : |z| = 1} with a degree of at most N is denoted by TN

and C(T) is the space of continuous functions on T equipped with
the supremum norm ‖·‖∞. As usual, Lp = Lp(T) with 1 ≤ p ≤ ∞
denotes the set of all p-integrable functions on T with the common
norm ‖ · ‖p [6]. Every f ∈ Lp with 1 < p < ∞ can be represented
by its Fourier series

f(ejω) =
� ∞

k=−∞ f̂k ejkω (2)

with the Fourier coefficients

f̂k = 1
2π � π

−π
f(ejω)e−jkω dω . (3)

Let B be a subspace of L1, then B+ = {f ∈ B : f̂k =
0 for all k < 0} denotes the (causal) subspace of all f ∈ B for
which all Fourier coefficients with negative index are equal to zero.
Every f ∈ B+ can be identified with a function

f(z) :=
� ∞

k=0 f̂k zk

which is analytic inside the unit disk D = {z ∈ C : |z| < 1}.
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For all 1 ≤ p ≤ ∞ the spaces (Lp)+ are also known as the
Hardy spaces Hp with the usual norms [7], which are also denoted
by ‖ · ‖p. The subspace Hp

0 ⊂ Hp is the set of all functions f ∈ Hp

for which f(0) = 0. The space A := (C(T))+ is the so called disk
algebra. It is equal to the set of all f ∈ H∞ which are continuous
in the closure D = D ∪ T of the unit disk. Finally, PN = (TN )+ is
the set of all (complex) polynomials of a degree of at most N .

2.2. System theory

Let L be a causal linear system y = Lx with a transfer function
f which maps every input signal x ∈ L2 of finite energy onto an
output signal y ∈ L2 of finite energy. Such a linear system is said
to be (energy) stable, and it is clear that the operator norm of L is
finite in this case: ‖L‖L2→L2 < ∞. Moreover, it is well known
that this operator norm is equal to the supremum norm of its transfer
function:

‖L‖L2→L2 = sup
x∈L2

‖Lx‖2
‖x‖2

= sup
|z|<1

|f(z)| = ‖f‖∞ .

Moreover, the Fourier coefficients {f̂k}∞k=−∞ of any transfer
function f can be interpreted as the impulse response of L. Then, it
is clear that B+ contains all causal transfer functions from a certain
set B of transfer functions.

Therewith, it is clear that L∞ can be identified with the set of all
(energy) stable transfer functions, whereas H∞ contains all causal
and stable transfer functions. The disk algebraA, on the other hand,
comprises all causal and stable transfer functions which can be ap-
proximated by a finite impulse response (FIR) system (i.e. by an
polynomial). Moreover, since we are always interested in stable ap-
proximations (1), it is clear that the approximation error f − SNf
has to be measured in the stability norm ‖ · ‖∞.

2.3. Problem statement

Let f be a given transfer function. As an example, assume that f
should be approximated by a causal FIR system of degree N . Thus,
we look for a certain polynomial g ∈ PN such that the approxima-
tion error ‖f − g‖∞ can be controlled.

One possibility for the determination of such an g is

the truncated Fourier series: g(1)(ejω) = (S(1)
N f)(ejω) =� N

k=0 c
(1)
k (f) ejωk in which c

(1)
k (f) = f̂k are the Fourier coeffi-

cients (3) of f . This approximation is very simple, since the coef-
ficients ck depend linear on the given f but not on the degree N .

However, this approximation S(1)
N f is not optimal with with respect

to the minimal approximation error ‖f − g‖∞, in general.

A second possible approximation method takes this g which
minimizes the approximation error ‖f − g‖∞. This optimal g
is uniquely determined by its Fourier coefficients and has there-

fore also a representation of the form g(ejω) = (S(2)
N f)(ejω) =� N

k=0 ck(f, N) ejωk, but now the Fourier coefficients ck(f) depend
non-linear on f and on N .

Here, we considers general approximation methods of the form
(1) with arbitrary basis functions ϕk. Basically, we require that the
approximation method (1) satisfies the following three natural prop-
erties:

(A) Stability: The approximation error ‖f − SNf‖∞ should
decrease as the degree N increases, and supN∈N

‖SNf‖∞ ought to
be bounded.

(B) Causality: The approximation SNf should represent a
causal transfer function. This is certainly achieved if all individual
transfer functions ϕk are causal.

(C) Linearity: The calculation of the coefficients ck(f, N)
should be sufficiently simple. Therefore, we assume that the co-
efficients have the following general representation

ck(f) = 1
2π � π

−π
f(ejθ) γk(ejθ) dθ (4)

with certain functions γk ∈ L1. Obviously, the so defined coeffi-
cients ck(f) depend linear on f .

This paper considers approximation methods with these three
properties on the space C(T) of all continuous functions. It will
show that there exists no approximation method SN : C(T) → A
which satisfies all three of the above properties.

The approximation problem on the space C(T) arises in partic-
ular due to distortions of the given data f by certain errors (e.g. es-
timation or quantization errors). For example, assume that a causal
and stable transfer function f is given which should be approximated
in the filterbank (1). In many cases f is disturbed by a function Δ

such that only �f = f + Δ is known. Then, the approximation error

‖SN �f − f‖∞ ≤ ‖SNf − f‖∞ + ‖SNΔ‖∞
has to be controlled. Even if the approximation error of the perfect f
(first term on the right hand side) tends to zero as N →∞, the sec-
ond term may become arbitrary large. Thus, in order to controll the
overall approximation error, the approximation of the disturbance
‖SNΔ‖∞ should remain bounded for all possible disturbances Δ.
In general, it can not be assumed that the disturbance Δ belongs to
the same class as the transfer function f (causal and stable, in the
present case). One reasonable (and already quite optimistic) model
for the disturbance Δ, is that Δ is a continuous function. For these
reasons, the approximation problem on the space C(T) is considered
in this paper. It is clear that all the results hold also for all kinds of
worst disturbances which may even be not continuous.

3. APPROXIMATION METHODS

3.1. Non-linear approximations

Let f ∈ C(T), we look for a causal and stable transfer function
g ∈ H∞ which approximates f as close as possible. Moreover, we if
demand that the approximative transfer function g is also continuous,
we have to look for such an optimal g ∈ A. It is known [7] that

E(f,A) = inf
g∈A

‖f − g‖∞ = inf
g∈H∞ ‖f − g‖∞ = E(f, H∞)

in which E(f,A) and E(f, H∞) are called the best approximation
of f inA and H∞, respectively [8]. Thus, the best approximation is
equal in A and H∞ which means that the remaining approximation
error coincide in both spaces. Since A ⊂ H∞ the optimal g, for
which the best approximation is attained, belongs to H∞, in general
and there exists a unique function gopt ∈ H∞ such that

E(f,A) = E(f, H∞) = ‖f − gopt‖∞ .

Thus, the optimal approximation gopt of a continuous function f is
non-continuous, in general. Only if the approximation problem is
considered on a subspace Cω(T) of smooth functions in C(T), the
optimal gopt will always be continuous on T. It can be shown that
gopt ∈ A if the modulus of continuity ωf of f is a regular majorant
(see e.g. [9]). In the following, such subspaces Cω(T) ⊂ C(T) are
considered for which the best approximation gopt belongs to A .
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How does gopt depends on the given f and does there exists a
linear mapping Mopt

+ : f �→ gopt which gives to every f ∈ Cω(T)

the optimal approximation gopt ∈ A? The general interrelation be-
tween f and gopt is quite complicated. However, it is known [7, Sec-
tion IV] that to every f ∈ C(T) ⊂ L∞(T) there exists an F ∈ H1

0

such that f − gopt = E(f,A) F
|F | . Consequently, the causal and

stable transfer function, which approximates the given f best, can
be written as

gopt = f − E(f,A) e−j arg(F )

with a certain function F ∈ H1
0 . This last relation shows that 1)

Mopt
+ f = f whenever f ∈ A and 2) that the mapping Mopt

+ is
non-linear, in general.

Similarly, one can consider the approximation by FIR filters.
Then the best approximation by a (causal) polynomial inPN is given
by

E+(f, N) = infp∈PN ‖f − p‖∞ = ‖f − popt
N ‖∞ . (5)

The mapping Mopt
+,N : f �→ popt

N onto the optimal polynomial is

unique but again Mopt
+,N is a non-linear operator, in general. We

summarize this result by the following lemma.

Lemma 1: There exists an approximation method Mopt
+,N :

C(T) → PN which maps every f ∈ C(T) onto a unique causal
polynomial popt

N ∈ PN which satisfies (5). This method has the
properties (A) and (B) but it is non-linear.

3.2. Non-causal, linear approximations

Next we consider linear approximations of the form

(S(w)
N f)(ejω) =

� N
k=−N w( k

N
) f̂k ejkω (6)

in which f̂k are the usual Fourier coefficients (3) of f , and w(x) is
a window function defined for −1 ≤ x ≤ 1 and with w(x) = 0 for
all |x| > 1. Since the representation (6) contains non-zero negative

Fourier coefficients, it is clear that the approximation S (w)
N f is non-

causal. It is clear that the coefficients ck(f) = w(k/N) f̂k depend
linear on f . Therefore (6) has property (C). For the window function
w(x) = 1, the usual Fourier series (2) is obtained. However, it is
well known [8] that this series does not converge uniformly to f for

all f ∈ C(T) which implies that limN→∞ ‖S(w)
N f‖∞ = ∞ for

some f ∈ C(T). For this reason, other windows w are considered.
Most important is the triangular window w(x) = 1 − |x| and the
trapezoid window w(x) = 1 for 0 ≤ |x| ≤ 1/2 and w(x) = 2(1−
|x|) for 1/2 < |x| ≤ 1. For the triangular window, the series (6) is
also known as Fejér mean of f and for the trapezoid window, (6) is
called de la Vallée-Poussin mean of f . It is well known [8] that for

these window functions hold that limN→∞ ‖f − S(w)
N f‖∞ = 0 for

all f ∈ C(T), which shows that the approximation methods possess
property (A). We summarize this in the following lemma.

Lemma 2: There exist approximation methods S (w)
N : C(T) →

C(T) witch are stable (A) and linear (C) but which are non-causal.

4. BEHAVIOR OF CAUSAL APPROXIMATIONS

This section investigates approximation methods of the form (1) with
properties (B) and (C). Thus, we assume that the transfer functions
{ϕk}∞k=1 in (1) are causal and stable (ϕk ∈ A for all k) and that
the coefficients ck(f) are of the form (4). In order that even an

approximation is possible, we have to make sure that the system
{ϕk}∞k=1 spans the whole A. Thus, as a minimal property of the
method SN , we require that it converges at least for all polynomials
of the form pm(z) = zm for all integers m ≥ 0. This means in
the following, we always require that the method SN satisfies the
property

limN→∞ ‖pm − SNpm‖∞ = 0 for all m ≥ 0 .

The question arises, whether there exist such methods which
have also property (A), i.e. which are also stable. The following
theorem shows that no such method exist.

Theorem 3: For every approximation method SN : C(T) → A
of the form (1) with ϕk ∈ A and with the coefficients ck of the form
(4) there exist functions f ∈ C(T) such that supN∈N

‖SNf‖∞ =∞
and such that lim supN→∞ ‖f − SNf‖∞ =∞.

This theorem is an extension of a result presented in [10]. Be-
cause of the limited space, a detailed proof can not be presented, but
only a short outline of the main steps.

Sketch of proof: If the coefficients (4) are plugged into (1) an
integral representation of the approximation operator (1) is obtained:

(SNf)(z) = 1
2π � π

−π
f(ejθ) KN (ejθ, z) dθ

with the reproducing kernel KN (ejθ, z) =
� N

k=1 γk(ejθ) ϕk(z). It
can be verified that the operator norm of SN : C(T) → A is equal
to

‖SN‖C(T)→A = sup
|z|<1

�
1

2π � π

−π

|KN (ejθ, z)| dθ� � � �
=:LN (z)

	

where the right hand side is the so called Lebesgue constant of SN ,
which was also investigated in [5] for one special system {ϕk}∞k=1

of rational functions. Here, ϕk are arbitrary functions in A.
Now, it can be shown (a detailed proof will be published else-

where) that

lim infN→∞ 1
2π � π

−π
|LN (ρejτ )| dτ ≥ 1

π ρ
log 1

1−ρ
(7)

for all 0 < ρ < 1, and for all possible systems {ϕk}∞k=1 with ϕk ∈
A for all k. It follows from (7) that

lim inf
N→∞

sup
|z|<1

LN (z) =∞

which certainly implies that lim infN→∞ ‖SN‖C(T)→A = ∞. To-
gether with the theorem of Banach-Steinhaus, this proves the state-
ment of the theorem. �

It follows in particular, that to every such approximation opera-
tor SN , characterized in Theorem 3, there exist continuous functions
f ∈ C(T) such that the approximation error ‖f −SNf‖∞ increases
as the approximation degree N is increased. In conclusion, the The-
orem 3 shows that there exists no stable, causal and linear approxi-
mation method on C(T).

5. DISCUSSIONS AND CONCLUSIONS

It was shown in Section 3.2 that the windowed Fourier series (6) is
an approximation method with properties (A) and (C), i.e. stable and
linear. What happens if the non-causal part is truncated? Clearly this
will give an approximation method with property (B) (causality), but
unfortunately and in accordance with Theorem 3, the operators will
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Fig. 1. The Lebesgue constants for different windowed Fourier se-
ries versus the approximation degree N . All curves are normalized
by 1

π
log N .

lose property (A), i.e. the stability, due to this truncation. To see this,
consider the causal version of the windowed Fourier series (6)

(S(w)
N f)(z) =

� N−1
k=0 w( k

N
) f̂k zk , (z ∈ D)

with the same window functions w(x) as in Section 3.2. The kernels

of these approximation operators S(w)
N become then KN (ζ, z) =

� N−1
k=0 w(k/N) ζ

k
zk. As in the proof of Theorem 3 we use the

corresponding Lebesgue constants to investigate the operator norms.
For these Lebesgue constants hold that sup|z|<1 ‖KN (·, z)‖1 =

sup|z|<1 ‖KN (·, z)‖1 and since KN (ζ, z) is an analytic function
for every fixed z and for all ζ ∈ D, we can apply Hardy’s inequality
(see e.g. [7]) and obtain

‖KN (·, z)‖1 ≥ 1
π

� N−1
k=0

w(k/N)
k+1

zk .

This finally shows that the Lebesgue constants, and therewith the

operator norms ‖S(w)
N ‖C(T)→A, diverge as N tends to infinity. For

the Fejér mean, for instance, one obtains

sup|z|<1 ‖KN (·, z)‖1 ≥ 1
π
[log(N + 1)− 2]

and similar results hold for all usable window functions w. For
the Lebesgue constants hold always a lower bound of the form
sup|z|<1 ‖KN (·, z)‖1 ≥ 1

π
[log(N +1)− c(w)] with a certain con-

stant c(w) which depends on the actual window w.
Fig. 1 demonstrates that the lower bounds of the Lebesgue con-

stants, obtained form Hardy’s inequality, are quite tight. It shows
the Lebesgue constants for the constant window w(x) = 1 (Dirich-
let kernel) and for the Fejér and de la Vallée-Poussin means. All
Lebesgue constants are normalized by 1

π
log N which is equal (up

to a constant) to the lower bound obtained from Hardy’s inequality.
For N → ∞, all graphs seems to converge to 1 which shows the
tightness of the lower bounds.

It was shown in [11] that there exists a basis {ϕk}∞k=1 in A
such that every causal and stable transfer function f ∈ A can be
expanded in this basis: limN→∞ ‖f −

� N
k=1 ck(f)ϕk‖∞ = 0 for

all f ∈ A. However, as a consequence of Theorem 3, for every
such basis {ϕk}∞k=1 in A there always exists an f ∈ C(T) such that

lim supN→∞ ‖f−
� N

k=1 ck(f)ϕk‖∞ =∞. Thus, such a basis can
not be used to approximate continuous functions. Also a windowing
of the generalized Fourier coefficients will not improve this behavior,
as it was shown on the example of the classical Fourier series.

Taking up the discussion from the introduction: In practical ap-
plications, the transfer functions f ∈ A are disturbed by a certain er-
ror Δ ∈ C(T). Using a linear and causal approximation method (1),
it will never be possible to control the approximation error induced
by Δ. There are three possibilities to overcome this problem. Either
a non-linear approximation method is used (cf. Section 3.1) which
will yield quite complex approximation algorithms. Or, a non-causal
approximation method is applied (cf. Section 3.2), which may phys-
ical non-realizable is certain applications. As a third possibility, the
class of admissible disturbances may be reduced. Because it can be
shown (see [9] for an first step in this direction) that for all smooth
functions, namely for all f ∈ Cω(T) ⊂ C(T) with a regular majorant
ω, stable, causal, and linear approximation methods exist.
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