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ABSTRACT

The problem of blind source separation (BSS) for multiple-input
multiple-output (MIMO) autoregressive (AR) mixtures is addressed
in this paper. A new time-domain method for system identi cation
and BSS is proposed based on the Gaussian mixture model (GMM)
for sources distribution. The algorithm is based on the generalized
expectation-maximization (GEM) method for joint estimation of the
AR model parameters and the GMM parameters of the sources. The
method is tested via simulations of synthetic and real audio sig-
nals. The results show that the proposed algorithm outperforms the
well-known multidimensional linear predictive coding (LPC), and it
achieves higher signal-to-interference ratio (SIR) in the BSS prob-
lem.

Index Terms— MIMO-AR, MIMO system identi cation, BSS,
EM,convolutive mixtures, GMM

1. INTRODUCTION

Blind source separation (BSS) has been intensively investigated in
the literature in the recent two decades. This problem is important
in several applications in communications, biomedical engineering
and blind audio sources separation. Classical research in this eld
has dealt with blind separation of instantaneous mixtures where the
observed signal samples are obtained by a linear combination of the
sources samples [1], [2]. A more challenging problem is multiple-
input multiple-output (MIMO) system identi cation and blind sepa-
ration of convolutive mixtures where the mixing matrix is frequency-
dependent. There are two common approaches to handle the convo-
lutive BSS problem: frequency domain [3], [4], and time domain
[5], [6]. In the frequency domain approach, the sensor signal model
at each frequency bin is similar to the instantaneous mixture case.
Therefore, instantaneous BSS techniques can be independently ap-
plied for each frequency bin. The main disadvantage of this ap-
proach is the frequency permutations problem [4].

In this paper, the time domain approach is adopted for the con-
volutive BSS problem. The convolutive mixture is modeled by a
MIMO system with multi-dimensional autoregressive (AR) relations
between the inputs and outputs. The sources distribution is modeled
by the Gaussian mixture model (GMM). The motivation for mod-
eling the non-Gaussian source signals by GMM is that many prob-
ability density functions (PDF) can be closely approximated by a
mixture of nite number of Gaussians [7]. The GMM distribution
combined with the AR model for the source signal has been used for
BSS of instantaneous mixtures [8].

In this work, we consider a different problem with independent
and identically distributed (i.i.d.) GMM sources and convolutive
MIMO-AR mixtures. We consider two problems: system identi-
cation and source separation. The MIMO-AR parameters of the

mixture and the GMM parameters are jointly estimated via a quasi
maximum-likelihood (QML) estimator, implemented by using the
generalized expectation-maximization (GEM) iterative method. The
proposed algorithm is a generalization of the single-input single-
output (SISO) system identi cation problem presented in [9], which
is an extension of the Yule Walker equations to GMM.

2. PROBLEM FORMULATION

2.1. The MIMO-AR model

Consider the following MIMO-AR model:

xn = Ax
P
n + Hsn ∀n = 1, . . . , N (1)

where n represents the time index, sn denotes the K-dimensional
source vector, xn = (xn,1, . . . , xn,L)T is an L-dimensional obser-
vation vector, and xn,i represents the nth sample at the ith sensor.
The past samples vector, xP

n , is de ned as follows

x
P
n = (xn−1,1, . . . , xn−P,1, . . . , xn−1,L, . . . , xn−P,L)T

,

where P is the AR order, assumed to be known. A is an unknown
L × LP deterministic state transition matrix relating the state vec-
tor of the system between time instance n and time instances n −
1, . . . , n − P . The matrix H is an unknown L × K deterministic
input mixing matrix. The number of sensors, L, is assumed to be
greater or equal to the number of sources,K. This assumption is not
necessary for estimation ofA. In addition, we assume that the initial
conditions are known.

2.2. Source distribution model

The GMM is commonly used to model non-Gaussian PDF’s, since
it is capable of closely approximating many densities and has been
considered by a number of researchers for this purpose [7]. In this
work, the sources are assumed to be statistically independent. Each
source signal is an i.i.d. GMM-distributed sequence. Under this
model, the PDF of the kth source signal at each time instance is

fsk,n
(s; θs) =

nkX
i=1

φk,iN (s; 0, σ
2
k,i) ∀n = 1, . . . , N . (2)

The notation N (ξ; μ,Λ) represents a normal distribution function
with variable ξ, mean μ, and covariance matrix Λ. The number
of Gaussians for the kth source is denoted by nk . The variance
and the weighting coef cients of the ith Gaussian are denoted by
σ2

k,i and φk,i, respectively. The weighting coef cients, φk,i, satisfyPnk

i=1 φk,i = 1, 0 < φk,i ≤ 1, ∀k = 1, . . . , K. For simplicity of
the derivations, we assume that the means of the Gaussians are equal
to zero. Extension to the nonzero case is straight-forward.
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Under the assumption of independent source signals, the joint
PDF of the sources is modeled by a multivariate GMMwith diagonal
covariance matrices:

fsn (sn; θs) =
KY

k=1

fsk
(sk; θsk

) =
MX

m=1

πmN (s;0, Cm) (3)

where M =
QK

k=1 nk is the GMM order, assumed to be known.
The indexm denotes a single combination of Gaussians from all the
sources. The weighting coef cients, {πm}

M
m=1, also satisfy 0 <

πm ≤ 1,
PM

m=1 πm = 1 ∀m = 1, . . . , M . The diagonal matrix
Cm represents the variances of the mth Gaussian. The set of un-
known parameters is denoted by θs = {πm;Cm}

M
m=1.

2.3. Sensors distribution model

Let x �
= [xT

1 , . . . ,xT
N ]T denote the measurements at the N time

instances. The sequence {xn}
N
n=1 is a P -order Markov process with

known initial conditions, and thus, the PDF of x can be expressed as
fx(x) =

QN

n=1 fxn|xP
n

(xn|x
P
n ). Since a linear transformation of

a GMM-distributed random variable is also GMM-distributed, the
conditional PDF of xn|x

P
n is also GMM, and using (1) and (3), it

can be written in the form

fxn|xP
n

(xn|x
P
n ; θ′x) =

MX
m=1

πmN (xn;Ax
P
n ,Rm) (4)

where θ′x = {{πm,Cm}
M
m=1,A,H} denotes the set of unknown

distribution parameters of the observation signals and the structured
covariance matrices are

Rm
�
= HCmH

T
, m = 1, . . . , M . (5)

In the case of lower number of sources than sensors, the matrixRm

is singular because rank(H) ≤ K < L. In this case, Rm can
be replaced withRm = limε→0(HCmHT + εIL) where IL is an
identity matrix of size L.

2.4. Objective

In this paper, we are interested in two problems: 1) system identi-
cation, i.e. estimation of the state transition matrix A and input
mixing matrix H, and 2) source separation, i.e. estimation of the
source signals {sn}

N
n=1. Estimation of the system parameters is per-

formed in two stages. In the rst stage, the state transition matrix,
A, is estimated via the GEM algorithm. In the second stage, the
input mixing matrix, H, is estimated and the signals are separated
using the GMMJD algorithm [10]. In the SISO case the solution of
the problem stated above is performed in similar stages: 1) estima-
tion of the AR coef cients using the Yule Walker equations, and 2)
estimation of the input signal variance. These stages are described
in the following two sections.

3. STATE TRANSITIONMATRIX ESTIMATION

In this section, the covariance matrices {Rm}
M
m=1 are assumed to

be unstructured, that is, the structure in (5) is ignored. Then, the log-
likelihood function for estimation of θx = {{πm,Rm}

M
m=1,A}

from the observation vector x, de ned by the model presented in
(1), can be written as:

log fx(x;θx) =
NX

n=1

log
MX

m=1

πmN (xn;Ax
P
n ,Rm) . (6)

Since the maximization of the above log-likelihood function w.r.t.
the unknown parameters cannot be analytically performed, the GEM
algorithm is used. In this GEM algorithm, the maximization step is
replaced with the method of coordinate ascent which converges to a
local maximum of the function [11].

The GEM algorithm can be implemented in problems where
there is “complete” data Z = (x,y) such that the expectation
E{log fZ(Z; θ′)|y; θ′′} can be easily computed for any two param-
eters sets θ′, θ′′. In the GEM approach θ̂

(i+1)
is computed such that

U
“
θ̂

(i+1)
, θ̂

(i)
”
≥ U

“
θ̂

(i)
, θ̂

(i)
”
where

U
“
θ, θ̂

(i)
”
�
= Ey|x

h
log fx,y(x,y; θ)|x; θ̂

(i)
i

(7)

and i denotes the iteration index. Under fairly general conditions,
this algorithm is guaranteed to converge to (at least) a local maxi-
mum of the log-likelihood function [12]. Therefore, it is referred to
as QML estimator.

In our problem, the complete data is chosen to be Z = (x,y)
withy = [yT

1 , . . . , yT
N ]T , where the hidden indication vectors, yn =

(yn,1, . . . , yn,m)T n = 1, . . . , N are randomized according to the
following PDF:

fyn(yn) =
MX

m=1

πmδ(yn,m − 1) (8)

where δ denotes the Dirac’s delta function and

yn,m =

j
1 if sn is generated by themth Gaussian
0 otherwise . (9)

According to the Bayes theorem [13]:

fxn|xP
n

(xn|x
P
n ; θx) = Ey[fxn|yn,xP

n
(xn|yn,x

P
n ; θx)]

=
MX

m=1

πmfxn|yn,xP
n

(xn|yn = 1,x
P
n ; θx) .

It can easily be seen that (10) is identical to (4). Using (8)-(10), the
logarithm of the joint PDF of x,y is given by [13]:

log fx,y(x,y; θx) =

NX
n=1

MX
m=1

yn,m log[πmN (xn;Ax
P
n ,Rm)] .

(10)

According to (7), the expectation step in the GEM algorithm is the
computation of the conditional expectation of (10):

U
“
θx, θ̂

(i)

x

”
=

NX
n=1

MX
m=1

γ
(i)
n,m log[πmN (xn;Ax

P
n ,Rm)] (11)

where γ
(i)
n,m

�
= Ey|x

h
yn,m|θ̂

(i)

x

i
. Since yn,m can have only dis-

crete values of 0 and 1, by applying the Bayes theorem, γ(i)
n,m can be

calculated in the following manner [13]:

γ
(i)
n,m =

π̂
(i)
m N (xn; Â(i)xP

n , R̂
(i)
m )PM

m=1 π̂
(i)
m N (xn; Â(i)xP

n , R̂
(i)
m )

. (12)

The maximization step in the GEM algorithm is performed by
maximizing (11) w.r.t. θx. The mixture weights, πm, are estimated
by maximizing (11) under the constraint

PM

m=1 πm = 1:

π̂
(i+1)
m =

1

N

NX
n=1

γ
(i)
n,m ∀m = 1, . . . , M . (13)
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The covariance matrices, {Rm}
M
m=1, are estimated by maximizing

(11) w.r.t. θx:

R̂
(i+1)
m =

PN

n=1 γ
(i)
n,m(xn − Â(i)xP

n )(xn − Â(i)xP
n )TPN

n=1 γ
(i)
n,m

(14)

∀m = 1, . . . , M . Maximization of (11) with respect toA is achieved
via equating the corresponding partial derivatives to zero, which
yields:

NX
n=1

MX
m=1

γ
(i)
n,mR̂

(i)−1

m xn(xP
n )T =

NX
n=1

MX
m=1

γ
(i)
n,mR̂

(i)−1

m Â
(i+1)

x
P
n (xP

n )T (15)

By applying the vec operator on both sides of (15) and using the
Kronecker products property vec(A1A2A3) = (AT

3⊗A1)vec(A2),
we obtain:

vec(Â(i+1)) =

"
MX

m=1

T
(i)
m ⊗ R̂

(i)−1

m

#−1

vec

"
MX

m=1

R̂
(i)−1

m G
(i)
m

#

(16)

where T
(i)
m

�
=

NP
n=1

γ
(i)
n,mxP

n (xP
n )T andG

(i)
m

�
=

NP
n=1

γ
(i)
n,mxn(xP

n )T .

Note that due to the summation over the Gaussians, the matrixPM

m=1 T
(i)
m ⊗ R̂

(i)−1

m is not necessarily singular if the number of
sensors is lower than the number of sources.

The GEM algorithm runs iteratively by carrying out the follow-
ing two steps at each iteration:

• The E-step (Expectation): Compute γn,m by (12).
• The M-step (Maximization): Maximizing (11) w.r.t. θx with

γn,m obtained in the E-step.
These two steps are repeated till a prede ned convergence criterion
is satis ed.

It can be easily seen that in the case of MIMO-AR system with
Gaussian distributed sources , this solution reduces to the well known
multidimensional Yule-Walker equations obtained in the linear pre-
dictive coding (LPC) [14]:

ÂLPC =

"
NX

n=1

xn(xP
n )T

# "
NX

n=1

x
P
n (xP

n )T

#−1

. (17)

The above procedure also coincides with the SISO-AR system iden-
ti cation technique, described in [9].

4. INPUT MIXINGMATRIX ESTIMATION AND SOURCE
SEPARATION

The proposed method is based on the coordinate ascent technique,
where each iteration consists of two stages: 1) freezeH and {Cm}

M
m=1

to construct {Rm}
M
m=1 and estimate {πm}

M
m=1 and A; 2) freeze

A and {πm}
M
m=1 to estimate H and {Cm}

M
m=1. The rst stage

can be performed according to the procedure described in the pre-
vious section in which estimation of {Rm}

M
m=1 is replaced by (5).

In other words, the extended algorithm is identical to the GEM al-
gorithm presented in the previous section, where the maximization
w.r.t. {Rm}

M
m=1 is replaced by maximization w.r.t.H and {Cm}

M
m=1.

In this section, we focus on the second stage which provides an
estimate of H and {Cm}

M
m=1. The estimation in this part utilizes

the structure of {Rm}
M
m=1 stated in (5) by implementing a joint di-

agonalization technique. Estimation of the matrixH can be obtained
by maximizing (6) w.r.t. H and {Cm}

M
m=1, in which the estimate of

A from the previous iteration is substituted.
By denoting zn = xn −AxP

n = Hsn, n = 1, . . . , N , (6) can
be rewritten as:

log fx(x;θx) =
NX

n=1

log
MX

m=1

πmN (zn;0, Rm) . (18)

Maximization of (18) is identical to the maximization of the log-
likelihood in the instantaneous BSS problem. In the BSS problem,
the sources vector, sn, is reconstructed by estimating a separation
matrix,B, for which

ŝn = Bzn, ∀n = 1, . . . , N . (19)

In [10] an ML based approach for estimating B was derived.
This estimator is given by following minimization problem:

B = arg min
B“PM

m=1 π̂m

h
log |DIAG(BR̂mBT )| − log |BR̂mBT |

i”
where | · | denotes the determinant operator and DIAG(BR̂mBT )

denotes a diagonal matrix with the same diagonal elements ofBR̂mBT .
The minimum of (20) is attained for a matrix B which jointly

diagonalizes the estimated GMM covariance matrices. An approx-
imate joint diagonalization algorithm, offered by Pham [1], which
minimizes (20) w.r.t. B is applied in order to estimate the separa-
tion matrix. In the case of lower number of sources than sensors
(K < L), a dimension reduction stage is required in order to use the
above source separation procedure [10].

In summary, the proposed coordinate ascent algorithm for solv-
ing the BSS problem runs iteratively by carrying out the following
two-steps at each iteration:

1. Estimate the process zn by substituting Â from the previous
iteration: ẑn = x − ÂxP

n ; Estimate {Cm}
M
m=1 and B and

separate the source signals by applying the GMMJD method
[10] that includes a joint diagonalization algorithm, offered
by Pham [1].

2. Reconstruct {Rm}
M
m=1 according to (5) and estimate πm and

A according to (12), (13) and (16).
These two steps are repeated till a prede ned convergence criterion
is satis ed. The matrix Â(0) was computed using the LPC technique
(17).

5. SIMULATIONS RESULTS

The performances of the proposed system identi cation and BSS
techniques are evaluated via simulations with synthetic and speech
data. Estimation performance of the transition matrixA is compared
to the multi-dimensional LPC algorithm presented in (17) which is
the ML estimator under Gaussian assumption, and the BSS perfor-
mance is compared to the FastICA [15] applied to the whitened sig-
nal where the whitening procedure is based on the estimated A via
LPC.

The estimation performance of A is evaluated via the normal-
ized MSE, de ned as ÂMSE = ||Ã−

ˆ̃
A||F

||Ã||F
, where || · ||F denotes

the Frobenius norm and Ã = [I A] is the extended transition ma-
trix which includes also the zeroth order coef cients matrix. The
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performance of the BSS algorithm is evaluated in terms of signal-to-
interference ratio (SIR), de ned as the ratio between the target signal
power to the interference signal power: SIR = |ŝHs|2

‖ŝ‖2‖s‖2−|ŝHs|2
.

In the simulations, the case ofK = 2 sources andL = 4 sensors
was considered. The source signals were synthesized and mixed by

C =

»
0.57 0.51 0.43 0.49

0.51 0.52 0.49 0.48

–T

, and an AR process of order

P = 3 was generated by the state transition matrix

A = 10−2

2
64

16 −7 4 5.5 8 −8

10 4 −7 6 7 −13

15 −12 −1.5 1 −2.5 15

6 6 4 5 2 15

· · ·

9 2 5 1 −2 1

14 6 5 3 −2 1

12 10.5 8 12.5 11 2.5

6 −6 17 4 −4 2

3
5 .

The estimation performances are evaluated using 500 Monte-
Carlo trials. In the rst example, the sources were zero-mean GMM-
distributed with order M = 3 for both sources. The weighting
coef cients and the variances of the GMM-distributions for both
sources were set as follows: {φ1,m}

3
m=1 = (0.2, 0.6, 0.2), σ2

1,m =
{3, 30, 300}, {φ2,m}

3
m=1 = (0.55, 0.15, 0.3), σ2

2,m = {10, 100, 1}.
Fig. 2 shows that the proposed algorithm outperforms the multi-
dimensional LPC, in the state transition matrix estimation and source
separation.

In the second example, the performance of the proposed algo-
rithm was evaluated using speech signals from the ICA’99 synthetic
benchmarks [16] database, convolved with the MIM-AR system from
the previous example, to obtain 4 mixed signals. The sampling fre-
quency was fs = 22.05kHz. The observed mixed signals were
segmented into frames with 50% overlapping. The separation al-
gorithms were applied to each frame independently and the perfor-
mances were evaluated based on the SIR averaged over the frames.
A good qualitative recovery is con rmed by subjective listening to
the recovered audio signals and by the average SIR performance pre-
sented in the following table:

Time [sec] FastICA [dB] MIMO-AR-GMM [dB]
0.25 1.84 6.51
0.5 3.36 8.92
2 5.23 11.31

6. CONCLUSION

A new, ML-based algorithm for BSS of convolutive mixtures mod-
eled by MIMO-AR in the time domain was presented. The algorithm
assumes GMM distribution of the sources. The state transition ma-
trix and the sensors distribution parameters are jointly estimated by
applying the GEM algorithm. The separation matrix and the sources
are estimated via approximate joint diagonalization of the GMM co-
variance matrices. The proposed method extends the approach pre-
sented in [9] for SISO-AR system identi cation to MIMO-AR sys-
tems. The method was tested via simulations with synthetic and
speech data. It was shown that the proposed method outperforms the
multi-dimensional LPC in estimation of the state transition matrix,
and results in good separation performances for convolutive mix-
tures.
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