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ABSTRACT
Both direct and indirect methods exist for continuous-time
system identi cation. A direct method estimates continuous-
time input and output signals from their samples and then use
them to obtain a continuous-time model, whereas an indirect
method estimates a discrete-time model rst. Both methods
rely on fast sampling to ensure good accuracy. In this paper,
we propose a more direct method where a continuous-time
model is directly tted to the available samples. This method
produces an exact model asymptotically, modulo some alias-
ing ambiguity, even when the sampling rate is relatively low.
keywords: System identi cation, continuous-time sys-

tem identi cation, parameter estimation.

1. INTRODUCTION

Dynamical systems encountered in the physical world are usu-
ally of a continuous-time nature. However, when measuring
its input and output signals, we obtain discrete-time signals
formed by samples of possibly noisy and pre ltered versions
of these continuous-time signals. Continuous-time system
identi cation involves identifying a continuous-time model
using these samples [1]. Compared to its discrete-time coun-
terpart where abundant techniques are available (see, e.g., [2]
[3]), relatively less research has been done in this area. Avail-
able methods for continuous-time system identi cation are
summarized below.
Indirect Methods: In this approach, the sampled signals

are used to identify a discrete-time version of the system rst.
This is done by using any standard discrete-time system iden-
ti cation technique. The discrete-time model so obtained is
then converted to a continuous-time model by using any stan-
dard conversion method (e.g., bilinear (Tustin) approxima-
tion, matched pole-zero method, etc. [4]). The advantage
of this approach is that the actual identi cation is done us-
ing discrete-time system identi cation techniques which are
well developed and their behaviors well understood. How-
ever, a drawback of this approach is that the accuracy of the
standard model conversion methods depends on the sampling
frequency. Hence, it can not be too small.
DirectMethods: In this case, the parameters of a continuous-

time model is tuned to minimize an objective function con-
structed using the sampled signals. Generally speaking, the

construction of the objective function requires (explicitly or
implicitly) the estimation of the continuous-time signals from
their samples. Therefore, for these methods to be accurate, the
sampling frequency needs to be high (this requirement can be
replaced by other assumptions on the input and output signals
as, for example, is done in [5]). Based on the de nition of the
cost function, the direct methods can be further divided into
time-domain and frequency-domain methods.
Time-Domain Methods: These methods aim at trans-

forming the system’s differential equation into an algebraic
(linear) equation. In theory, this can be achieved by intro-
ducing some kind of pre-processing of the continuous-time
signals before the sampling operation (e.g., state-variable l-
tering and integration [6]). In practice, however, the pre-
processing is implemented in the discrete-time domain, after
the sampling operation. For this to be done, the continuous-
time signals are approximated from the available samples by
using a polynomial approximation. A main advantage of this
approach is that the continuous-time parameters can be solved
via a least-squares solution.
Frequency-Domain Methods: Here, the available sam-

ples are used to estimate the spectrum of the input and the
output signals. In order to do so, some assumptions on the
continuous-time signals (e.g., band-limitedness [5]) are needed.
A disadvantage of this approach is that the continuous-time
parameters are obtained by solving a non-linear optimization
problem.
In this paper, we propose a novel continuous-time sys-

tem identi cation method. As in other direct methods, our
method aims to tune the continuous-time parameters to min-
imize an objective function constructed from the available
samples. However, the key difference to the existing direct
methods is that we do not need to estimate the continuous-
time signals. Instead, we identify a continuous-time model
using the correlation functions of the continuous-time signals
which can be estimated using the sampled data. It turns out
that the proposed method produces, in theory, the exact sys-
tem model asymptotically, modulo some aliasing ambiguity,
as the number of samples tends to in nity, for any sampling
frequency. However, numerical problems associated with the
nite quantization of samples introduce a lower bound on
the sampling frequency. Nevertheless, numerical simulations
show that this lower bound can be as small as half of the -3dB
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bandwidth of the system in practice.
The aliasing ambiguitymentioned above refers to the well-

known fact that a continuous-timemodel produced using input-
output data sampled at a given frequency always has poles
ambiguous in the sense that their imaginary parts can be shifted
by any integer multiple of the sampling frequency without
changing the dynamic response of the system at the sampling
points. This ambiguity is common to all identi cation meth-
ods and can only be avoided by a priori knowledge of the
region of the poles.
The proofs of results are not included in the paper.

2. PROPOSEDMETHOD

The setting for continuous-time system identi cation is de-
picted in Fig. 1. The input signal u(t) and the output noise
v(t) are random processes. The discrete-time signals u(k)
and y(k) are generated by rst ltering the input signal and
the noisy output signal y(t) using the anti-alias lters H(p)
and L(p), respectively, and then sampling them with a sam-
pling period τ . It is assumed that G(p) is modeled by

Gθ(p) =
a0 + a1p + · · ·+ anpn

b0 + b1p + · · ·+ bn−1pn−1 + pn
, (1)

where θ = [a0, · · · , an, b0, · · · , bn−1] is the vector of param-
eters. Our aim is to identify θ based on the sampled signals
u(k) and y(k). We give an intuitive explanation of the pro-
posed method below.

u(t) w(t)

v(t)

y(t)

u(k) y(k)

ττ

G(p)

H(p) L(p)

Fig. 1. Proposed identi cation method

Let ru be the auto-correlation of u and ry,u be the cross-
correlation between y and u. It turns out that

ru = στ{h ∗ h∗ ∗ ru}, (2)
ry,u = στ{l ∗ h∗ ∗ g ∗ ru}, (3)

where h, g and l denote the impulse responses ofH(p), G(p)
and L(p), respectively, ru is the auto-correlation of u, ∗ de-
notes convolution, and στ (·) is the sampling operation. Now,
suppose that ru is known. Then, equation (3) states a rela-
tionship between the g and ry,u. Since ry,u can be estimated
from the available samples, (3) can be used to solve θ. This is
a nonlinear optimization problem and the solution is in gen-
eral non-unique. However, we can show (although not done

in this conference version) that the non-uniqueness is only
caused by the aliasing problem due to sampling, and therefore
the solution is indeed unique modulo the aliasing ambiguity
as mentioned in Introduction. A more detailed presentation is
given in Section 2.1.
The method outlined above relies on the knowledge of ru.

Depending on the application, this information can be known
a priori, or otherwise estimated from the available samples.
In Section 2.3 we use an argument similar to the one given
above to show that ru can be estimated accurately from ru

using (2), modulo some aliasing ambiguity.

2.1. Identi cation with known input auto-correlation

In this section we assume that the auto-correlation function
ru of the input signal u is known, and we use (3) to identify
θ. We denote the impulse response of Gθ(p) by gθ and the
parametric version of ry,u by r

θ
y,u, i.e.,

r
θ
y,u = στ{l ∗ h∗ ∗ ru ∗ gθ)},

where the overbar in H denotes complex conjugation. Also,
we de ne r

θ
y,u to be a vector ofm samples of rθ

y,u by

r
θ
y,u = [rθ

y,u(m1), · · · , rθ
y,u(m2)]

with m = m2 − m1 + 1. On the other hand, we de ne an
estimate r

(N)
y,u of ry,u by

r
(N)
y,u (k) =

1

N

N∑

l=1

y(l)u(l + k)

and de ne the corresponding vector r(N)
y,u for r(N)

y,u by

r
(N)
y,u = [r(N)

y,u (m1), · · · , r
(N)
y,u (m2)]

Hence, we can de ne the optimal vector of parameters θ(N)

up to time N , as the one that makes rθ
y,u as close as possible

to r
(N)
y,u , i.e.,

θ(N) = argmin
θ

∥∥∥r
θ
y,u − r

(N)
y,u

∥∥∥
2

2
. (4)

2.2. Parameter Optimization Algorithm

Solving equation (4) over all θ is a nonlinear least-squares
problem. However, if we x the denominator coef cient vec-
tor b = [b0, · · · , bn−1], then the optimization of the numerator
coef cient vector a = [a0, · · · , an] is a linear least-squares
problem. We may denote by a(N)(b) the optimal numerator
coef cients at sample N for a given denominator coef cient
vector b. Then,

a(N)(b) = arg min
a

∥∥∥r[a b]
y,u − r

(N)
y,u

∥∥∥
2

2
. (5)
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Now, the optimal vector of denominator coef cient vector
b(N) up to sample N can be computed by solving

b(N) = arg min
b

∥∥∥r[a(N)(b),b]
y,u − r

(N)
y,u

∥∥∥
2

2
(6)

and θ(N) is given by

θ(N) = [a(b(N)), b(N)]. (7)

The optimization problem in (6) is nonlinear but can be
solved using the simplex method [7]. Numerical simulations
show that the poles of the model always converge to those
of the true system, provided that the initial guess of them are
chosen such that they are closer to those of the true system
than any of their aliased versions. On the other hand, if the
initial guess is too far, the poles will converge to an aliased
version.

2.3. Estimation of Input Auto-correlation

So far, we have assumed that the auto-correlation function ru

is known. However, this may not be a realistic assumption
in certain applications. We now introduce a method to esti-
mate ru, which is analogous to the method in Section 2.1 for
estimating g.
More precisely, we consider that the signal u is generated

by ltering a continuous-time white random process by a lin-
ear time-invariant lter with a rational transfer function F (p)
parameterized by

F ρ(p) =
C(p)

D(p)
=

c0 + c1p + · · ·+ cνpν

d0 + d1p + · · ·+ dν−1pν−1 + pν
, (8)

where ρ = [c, d] = [c0, · · · , cν , d0, · · · , dν−1]. Consequently,
we consider a parameterizedmodel rρ

u of ru. Its Fourier trans-
form is given by

Φρ
u(ω) = F ρ(jω)F ρ(−jω).

The parameter vector ρ can be used using a method similar to
the one for θ, but (2) is used instead of (3). The only differ-
ence is in the parameter optimization algorithm. In this case,
for the estimation of the numerator coef cients to be linear,
Φρ

u needs to be re-parameterized as

Φξ
u(ω) =

E(ω)

D(jω)D(−jω)
,

where

E(ω) = C(jω)C(−jω) = e0 + e1ω
2 + · · ·+ eνω2ν

and ξ = [e, d] = [e0, · · · , eν , d0, · · · , dν−1]. It follows that
the optimal e for a given d can be found by solving a linear
least-squares problem, and the optimal d by using the simplex
method, analogous to (5) and (6). Once ξ is estimated, Φξ

u(ω)
and thus ru are completely characterized. Once again, the
estimate of Φξ

u becomes exact asymptotically, modulo some
aliasing ambiguity.

3. SIMULATIONS

It is known that direct methods are in general more accurate
than indirect methods [8]. Therefore, we only compare the
proposed methods with the direct methods. In particular, we
consider the frequency domain method in [5] (Approach 1 in
the reference). The following benchmark example from [1],
[6] and [8] is used:

G(p) =
6400p + 1600

p4 + 5p3 + 408p2 + 416p + 1600

which has four poles at−2± j19.90 and−0.5± j1.937. The
-3dB bandwidth of the system equals 26.85 rad/sec. The input
signal u is generated using

F (p) =
26.85

p + 26.85

which has the same bandwidth as G(p). The frequency re-
sponses of G(p) and F (p) are shown in Fig. 2.

10 2 10 1 100 101 102 103

100

ω

F(ω)

G(ω)

Fig. 2. Frequency responses of G(p) and F (p)

In the simulations below, we compare the estimation er-
rors of the different identi cation methods using

ε =
∥∥∥G(p)−Gθ(N)

(p)
∥∥∥

2
/ ‖G(p)‖2 .

As mentioned above, the initialization of the optimization al-
gorithm in (6) is not critical. Therefore, we initialize the de-
nominator ofGθ(p) to have four poles at−5± j5. To resolve
aliasing ambiguity, we correct the identi ed model by shift-
ing the identi ed poles by an integer multiple of ωs so that
they are consistent with those of the true system.
In the rst simulation we compare the performance of the

proposed method in two scenarios: (S1) under the assump-
tion that F (p) is known, and (S2) including the estimation of
F (p). In Fig. 3 we compare the identi cation error obtained
in the two scenarios, as a function of the sampling (radian)
frequency ωs = 2π/τ . It can be seen that the performance
of the proposed method is similar in the two scenarios, with
only a slightly bigger lost in performance in scenario (S2) for
low sampling frequencies. The reason for this is that the time
constant of F (i.e., 0.234 sec.) is signi cantly smaller than
the smallest time constant in G (i.e., 3.14), and therefore the
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Fig. 3. Comparison of scenarios

minimum sampling frequency for identifying F is larger than
that for G. In view of Fig. 3, we consider scenario (S1) for
the rest of the simulations.
In the second simulation we compare the performance of

the proposed method with that of the direct methods. Fig. 4
shows the identi cation errors as functions of ωs for differ-
ent values of N . We can see that the error of the proposed
method does not depend on the sampling frequency up to a
threshold frequency of about 5 rad/sec., under which numer-
ical problems prevent the non-linear optimization algorithm
to nd the optimal solution. The estimation error depends on
the number of available samples because this determines how
well r(N)

y,u approaches ry,u in (4). In particular, when in nite
number of samples are available, the error approaches zero at
all sampling frequencies above the threshold. On the other
hand, the performances of the direct methods improve as the
sampling frequency increases but do not change noticeably
with the number of samples. We conclude that the proposed
method outperforms the direct methods when the sampling
frequency is slow and the number of samples is large. In the
opposite situation when the sampling frequency is high and
the number of available samples is small, the direct methods
can be shown to outperform the proposed method.
We have also tried the time domain method in [6] (also

called state-variable lter method). But its performance is
rather poorly for the range of sampling frequencies under our
consideration.
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Fig. 4. Identi cation error vs. sampling frequency

3.1. Conclusion

We have proposed a novel identi cation method that directly
ts a continuous-time model to the given sampled input and
output signals. In this way, the proposed method is able to
produce asymptotically, as the number of samples approaches
in nity, the exact model of the system being identi ed, mod-
ulo some unavoidable aliasing ambiguity. This is valid in the-
ory, for any sampling frequency. In practice, however, numer-
ical problems introduce a lower bound on the sampling fre-
quency. Nevertheless, simulation results show that this lower
bound can be as small as half of the -3dB bandwidth of the
system. In comparison with the available methods in the lit-
erature, the proposed method is a valid option when a slow
sampling frequency must be used but a large number of sam-
ples available.
Acknowledgments: The authors would like to thank Dr.

KaushikMahata for discussions and ideas leading to this work.

4. REFERENCES

[1] G.P. Rao and H. Unbehauen, “Identi cation of
continuous-time systems,” IEE Proceedings - Control
Theory and Applications, vol. 153, no. 2, pp. 185–220,
2006.

[2] Lennart Ljung, System Identi cation: Theory for the
User, Prentice Hall, Upper Saddle River, NJ, second edi-
tion, 1999.
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