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ABSTRACT

We present a novel method for the blind identification prob-
lem of multichannel FIR systems based on the analytical so-
lution of a linear system of equations derived from the out-
put signal second order statistics. The method is very effi-
cient computationally since it does not involve iterative opti-
mization procedures. In addition, it is very robust to noise as
shown by our experiments. We also demonstrate that it com-
pares favorably in terms of estimation accuracy compared to
classical second order methods.

Index Terms— System identification, Blind identifica-
tion, Multichannel Systems

1. INTRODUCTION

The System Identification problem refers to the identification
of the impulse response of a linear system. Blind Identifica-
tion refers to System Identification knowing only the system
output signals (and the least possible information amount on
the input signals). The described problem is of great impor-
tance as it can be applied in many engineering areas: from
classic problems in wireless telecommunications and sound
recording, to hard disk data recovery.

The previous work on the Blind Identification problem
can be roughly separated in two general classes: methods us-
ing the Higher-Order Statistics (HOS) or Second-Order Statis-
tics (SOS) of the output signals (often called mixtures). Meth-
ods of the former group exploit the higher order spectra of
the signals in order to identify the channels [1], [2], [3]. A
drawback of these methods is that they are limited in sys-
tems driven by non-Gaussian sources. However the biggest
problem is that they usually rely on a minimization process
with low convergence. That kind of process requires large
dataset samples and important computational cost. Methods
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of the latter case exploit the special structure of mixture co-
variance matrices [4], [5], [6], [7]. The solution is often non-
iterative (batch) making these methods computational attrac-
tive. Although they can treat system with Gaussian sources,
their main disadvantage comes from the fact that they must be
driven by white sources.

A recently treated system (born on wireless telecommuni-
cation scenarios) supposes that the channels are time-varying
[7], [8], [9]. These methods usually suggest that the channels
are ”slowly” changing in time and the identification process
adapts to the new data. Another approach tries to transforms
the time-varying systems into equivalent stable ones and solv-
ing them with well-known techniques [10], [11].

The first Blind Identification method treated a Single-Input
Single-Output (SISO) system by transforming it into an equiv-
alent Single-Input Multiple-Output (SIMO) system and then
solving it using a matrix-pencil based method [12, 13]. Many
methods exist nowadays treating the more complex problem
of Mingle-Input Multiple-Output (MIMO) usually when the
mixtures are more than the sources [3] [6] or even in cases
where we have more sources than mixtures [14].

In this paper we will present a novel blind identification
method of multichannel FIR systems based on the second
order statistics of the output vector. The problem is trans-
formed into a set of linear equations generated with the help
of the SVD of the lagged covariance matrix. We shall demon-
strate the conceptual simplicity of the approach and we shall
compare against standard second order methods to establish
the numerical robustness and efficiency of the proposed tech-
nique.

2. SYSTEMMODEL AND PROBLEM DESCRIPTION

Let us consider a complexm×1, FIR channel of length L, ex-
cited by the complex input s(k), generating anm-dimensional
vector sequence x(k):

x(k) =
L−1∑
l=0

h(l)s(k − l) + e(k) k = 1, · · · , N (1)
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The element hi of h is the unknown complex filter connecting
the input swith the i-th output xi, while e(k) is additive white
noise vector.

It is well known that if we form the vector sequence x̄(k) =
[x(k)T x(k − 1)T · · · x(k −W + 1)T ]T by stacking obser-
vations in consecutive time windows of sizeW , then we can
write

x̄(k) = H̄s̄(k) + ē(k) (2)

where

H̄ =

⎡
⎢⎣
h(0) · · · h(L− 1) 0

. . .
. . .

0 h(0) · · · h(L− 1)

⎤
⎥⎦ (3)

is the generalized Sylvester matrix associated with the filter h
and

s̄(k) = [s(k) s(k − 1) · · · s(k − L−W + 2)]T ,
ē(k) = [e(k) e(k − 1) · · · e(k −W + 1)]T .

Our assumptions regarding the input and noise signals are
described below:
[A.1] The input process is wide sense stationary and the input
samples are i.i.d., so

E{s(k)s(k − l)∗} = δ(l), all k. (4)

[A.2] The noise samples are i.i.d.

E{ei(k)ei(k − l)∗} = σ2δ(l), all i, k. (5)

[A.3] The noise components are independent to each other
and to the input signal

E{ei(k)ej(k − l)∗} = 0, all i, j, k, l, (6)

E{ei(k)s(k − l)∗} = 0, all i, k, l. (7)

3. ANALYTICAL APPROACH

Let us inspect the delayed covariance matrixRs̄(l)
�
=E{s̄(k)

s̄(k − l)H} of the source vector s̄. Using the assumptions of
section 2 we can easily compute the covariance for delays l =
0 and l = 1 to be Rs̄(0) = I and Rs̄(1) = J1, respectively,
where

J1 =

⎡
⎢⎢⎢⎢⎣

0 0 0

1
. . .

. . .
. . .

. . . 0
0 1 0

⎤
⎥⎥⎥⎥⎦
.

Similarly, for the noise we have Rē(0) = σ2I and Rē(1) =
σ2J1. Thus the covariances for the output vector x̄ is

Rx̄(0) = H̄H̄H + σ2I,
Rx̄(1) = H̄J1H̄H + σ2J1.

Our proposed method is based on the observation that

H̄J1H̄H = H̄F H̄H
L ,

where H̄F (H̄L) is equal to the matrix H̄ except for the miss-
ing first (last) column. The first step is to estimate the noise
variance σ2 from the last eigenvalues of Rx̄(0) and then re-
move the noise component from Rx̄(1) by subtracting σ̂2J1,
to obtain

R̄(1) = Rx̄(1)− σ̂2J1 = H̄F H̄H
L . (8)

A key assumption is
[A.5] The matrices H̄F , H̄L are tall, so

mW > L+W − 2. (9)

Assumption A.5 holds for positive values of W iff m > 1,
whence

W > (L− 2)/(m− 1). (10)

Furthermore, we assume that
[A.6] The matrix H̄ has full column span.

The matrix R̄(1) has size (mW ) × (mW ) but its rank is
L+W − 2 < mW since it is formed by the outer product (8)
of two tall matrices with L+W − 2 columns. Therefore, the
column span of H̄F and H̄L can be obtained from the SVD
of R̄(1):

R̄(1) = UΣVH . (11)

Let Ū and V̄ be the parts of the matrices U and V corre-
sponding to the non-zero singular values of R̄(1), then

colspan(H̄F) = colspan(Ū), (12)

colspan(H̄L) = colspan(V̄). (13)

Ū and V̄ have size (mW ) × (L +W − 2). It follows that
there exist two square, invertible (L+W −2)× (L+W −2)
matrices TF , TL, such that

H̄F = ŪTF , (14)

H̄L = V̄TL. (15)

Let us focus for a moment on the equation (14), since an iden-
tical discussion holds for (15) as well. We know that the
matrix H̄F = [hFij ] has a special structure: it comes from
a block-Toeplitz matrix (see (3)) by erasing the first column.
Therefore

(a) there exists a setZ , of index pairs (i, j) such that hFij = 0,
iff (i, j) ∈ Z

(b) for all index pairs (i, j) �∈ Z and i > m, we have hFij =
hFi−m,j−1.
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We thus form the following system of linear constraints

ūHi tF,j = 0, for all (i, j) ∈ Z
ūHi tF,j − ūHi−mtF,j−1 = 0, for all (i, j) �∈ Z, i > m (16)

where ūHi is the i-th row of Ū. We may rewrite (16) as

Θt̄ = 0

where t̄ is the long vector [tTF,1 · · · tTF,L+W−2]
T and the ma-

trixΘ has size C×(L+W −2)2 with C being the number of
equations in (16). Each row ofΘ corresponds to one equation
in the system and it contains the appropriate values ūHi and/or
−uHi−m accordingly.

A careful counting of the indexes shows that system (16)
comprises ofm(W − 1)(L+W − 1) constraints whereas the
total number of unknowns tF,i,j is (L+W −2)(L+W −2).
By assumption A.5 we have more constraints than unknowns,
therefore, system (16) admits at most one solution. However,
according to (14), we know that one such solution exists thus
the system has exactly one solution. In practice, instead of
solving the system, we minimize the squared error

min
t̄
{t̄HΘΘH t̄}

by computing the eigenvalue decomposition of the matrixΘΘH

and selecting t̄ to be the least eigenvector (i.e. the one associ-
ated with the smallest eigenvalue).

We are thus able to obtain the matrixTF and consequently
we can form the matrix H̄F using (14). Subsequently we can
form an estimate of the filter ĥF (l), l = 0, · · · , L− 1, by av-
eraging the block diagonals of H̄F . An entirely similar proce-
dure can be performed using TL and H̄L obtaining a second
estimate ĥL(l). The average of the two estimates forms the
final estimate ĥ.

4. SIMULATIONS

We compared our proposed method against a well established
second order approach of Tong-Xu and Kailath [13] subse-
quently referred to as the TXK method. The randomly gener-
ated model hasm = 2 outputs:

h1(z) = 1.6424− 0.5825i+ (1.0135− 0.2525i)z−1

+(−0.5314 + 1.3851i)z−2

+(−1.4366 + 1.6141i)z−3

h2(z) = 2.6369 + 0.6517i+ (−0.1642 + 0.9942i)z−1

+(1.7606− 0.7157i)z−2

+(0.0796− 0.1402i)z−3

The performance index is the estimation accuracy measured
by the normalized MSE defined as follows:

NMSE =
‖h′ − ĥ′‖2
‖ĥ′‖2
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Fig. 1. Comparison between the estimation accuracy between
the Diamantaras-Papadimitriou method (DP) and the Tong-
Xu-Kailath method (TXK) as a function of the sample size
N . The SNR level is constant at 20dB. The plots are mean
values generated from 500 Monte Carlo experiments.

where h′ = [h1(0) · · ·hm(0) · · ·h1(L − 1) · · ·hm(L − 1)]
and ĥ′ = [ĥ1(0) · · · ĥm(0) · · · ĥ1(L− 1) · · · ĥm(L− 1)]. The
estimate ĥ′ is scaled to best fit the original system vector h′.

Figure 1 compares the proposed method against the TXK
method for various sample sizes N keeping the noise level
constant at 20dB. The results are averaged over 500 Monte
Carlo runs. The figure shows a clear advantage of the pro-
posed method. The same conclusion is drawn from Figure
2 where the two methods are compared for different levels of
SNR. The performance improvement is apparent especially in
low SNR cases. In this experiment the number of samples is
fixed at N = 2000, while again, the plots are averages after
500 Monte Carlo experiments.

5. CONCLUSION

In this paper we proposed a new analytical method for the
blind identification of multichannel FIR systems. The method
is conceptually simple as it boils down to the solution of a lin-
ear system of equations derived from second order statistics
of the output signal. The method is quite fast since it does
not involve iterative optimization procedures. Our simula-
tions show that it outperforms classical second order methods
both in terms of robustness to noise and in terms of perfor-
mance with a fixed sample size.
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