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ABSTRACT
We propose a new method, called DEMIX Anechoic, to esti-

mate the mixing conditions, i.e. number of audio sources plus

attenuation and time delay of each sources, in an underdeter-

mined anechoic mixture. The method relies on the assumption

that in the neighborhood of some time-frequency points, only

one source contributes to the mixture. Such time-frequency

points, located with a local confidence measure, provide es-

timates of the attenuation, as well as the phase difference at

some frequency, of the corresponding source. The time de-

lay parameters are estimated, by a method similar to GCC-

PHAT, on points having close attenuations. As opposed to

DUET like methods, our method can estimate time-delay hi-

gher than only one sample. Experiments show that DEMIX

Anechoic estimates, in more than 65% of the cases, the num-

ber of directions until 6 sources and outperforms DUET in the

accuracy of the estimation by a factor of 10.

Index Terms— Signal analysis, Discrete Fourier trans-

forms, Delay estimation, Audio recording, Cognitive science

1. INTRODUCTION

The problem of estimating the number of audio sources

and the mixing directions is considered in a possibly degene-

rate linear anechoic mixture. In the time domain, we have :

xm(τ) =
N∑
n=1

amnsn(τ − δmn), m = 1, 2, . . . ,M

where M ≤ N , amn ∈ R
+ and δmn ∈ R are attenuation

coefficients and time delays associated with the path from nth

source to the mth microphone. Whithout loss of generality,

we set δ1n = 0 for n = 1, 2, . . . , N , and
∑M
m=1 a

2
mn = 1.

Taking the Short Time Fourier Transform (STFT) of x1,-
x2, . . . , xM , the mixing model can be written in a matrix form

x̂(t, f) = A(f)ŝ(t, f)with x̂ = [x̂1 . . . x̂M ]T , ŝ = [ŝ1 . . . ŝN ]
T
.

In the stereophonic case, i.e M = 2, the mixing matrix is :

A(f) =
[

a11 . . . a1N
a21e

−i2πfδ1 . . . a2Ne
−i2πfδN

]

We replaced the δ2n notation with δn for simplificity. As each

column ofA(f) is normalised, a source direction n is defined

by only two parameters :

1. The intensity difference (ID) θn

θn := tan−1(a2n/a1n) (1)

2. The delay δn

Several methods exist that attempt to estimate the mixing

directions, that is to say δn and θn. DUET [1] and TIFROM

[2] are based on a time-frequency representation of the obser-

ved signals and exploit the fact that at some time-frequency

points, only one source contributes to the mixture. This as-

sumption is related to sparsity of the time-frequency repre-

sentation of the sources. Our approach relies on the same as-

sumption.

The DUET method finds directions by estimating the ID

and delay parameters directly on each time-frequency point,

and by finding maxima in a smoothed histogram of these para-

meters. However the drawback of the DUET method, is that

it cannot estimate delays higher than one sample. This pro-

blem has already been reported in [1, 3], and a solution was

proposed by Puigt [3] but with few experimental results. No-

tice that a delay of one audio sample can correspond to a very

short distance : At a CD sampling rate of 44.1kHz, a delay of

one sample correspond physically to a distance of propaga-

tion in the air of 7.8 mm.

In addition to many other source-separation approaches

which exploit globally the sparsity property [4, 1], our ap-

proach exploits local estimates of the activity/inactivity of

each source to get a more robust estimation of the ID and de-

lay parameters. This local approach, which has already been

used in the TIFROM method [2], is less sensitive to the spar-

sity assumption.

Our main contribution is to propose a new clustering al-

gorithm called DEMIX Anechoic, which extends the DEMIX

instantaneous algorithm [5] to the anechoic case. To do so

we : (1) introduce a confidence measure to determine how va-

lid is the assumption that only one source contributes to the

mixture in a given time-frequency region, and a way to esti-

mate parameters of this time-frequency region by the use of

a “complex” Principal Component Analysis (PCA) ; (2) pro-

pose a new way to estimate delays without the restriction of

having delays lower than only one sample. For this we in-

troduce a weighted correlation function similar to the GCC-

PHAT method [6].
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Section 2 presents our approach, section 3 details the DE-

MIX Anechoic algorithm we propose, and section 4 shows

the performances of our algorithm compared with other ones.

2. PROPOSED APPROACH

2.1. Exloiting sparsity and consistence

Sparsity enables to easily identify the ID parameter θn (1).

Let suppose we have a sparse source model where only one

source n := n(t, f) is active in each time-frequency point.

That is ŝn(t, f) �= 0 and ŝk(t, f) = 0 ∀k �= n. In such case

x(t, f) = an(f)sn(t, f), where an(f) =
[
a1n a2ne

−i2πfδn]T
is the direction n. In this ideal case, we can easily estimate

the ID parameter by taking the DUET ratio R21 := x̂2
x̂1

[1].

Indeed, if only source n is active, R21(t, f) ≈ a2n
a1n

e−i2πfδn .
So, by taking the absolute value |R21(t, f)|, we obtain the ID

parameter of direction n, that is θn = tan−1 |R21(t, f)|.
In DUET [1], the delay is estimated with the phase of the

R21 ratio : δ̃(t, f) := − 1
2πf∠R21(t, f). However this esti-

mation is ambiguous if the delay is higher than one sample.

Suppose that only source n is active. If we assume that the de-

lay δn is less than one sample, as f < 1
2 , we have : 2πδnf +

2kπ ∈ [−π π] if and only if k = 0. So the phase of R21
is not ambiguous modulo 2kπ. But if we don’t assume that

the delay δn is less than one sample, we cannot deduce k,
and the phase ambiguity is not resolvable. So the delay es-

timation : δ̃(t, f) ≈ δn + k
f is biased with an unknown va-

lue kf . In other words, as several δn are compatible with the

phase ∠R21(t, f), a time-frequency point has not enough in-

formation to deduce the delay of its direction. For this reason,

it is necessary to gather several time-frequency points of the

same source at different frequencies. That raises two issues.

(1) How to find several points of the same source ? (2) How

to deduce the delay, if we suppose that we have several points

of the same source ? A new approach to estimate the delay

without this ambiguity problem is proposed in section 2.3.

However in some time-frequency points, several sources

are simultaneously active. In this case, it is difficult to esti-

mate the mixing directions by simply clustering all the points,

because some sources of weak energy may not appear clearly.

Our approach, inspired by TIFROM [2] and already used for

DEMIX Instantaneous [5], consists in “boosting” points that

have a great chance of being generated by only one source.

To do this, we first define time neighborhoods Ωt,f = {(t +
kL/2, f)||k| ≤ K} around each time-frequency point x(t, f).
K is the neighborhood size and L is the STFT window size.

In order to account for the different possible durations of au-

dio structures in each source, we use a multi-resolution fra-

mework, so L has different values. If we assume that only

source n is active in the neighborhood Ωt,f , the points x(t, f)
are all aligned with the same “complex” direction an(f) be-

cause x(t, f) = an(f)sn(t, f). Whereas if we assume that

several sources are simultaneously active in Ωt,f , points are

no longer aligned.

So, by detecting how strongly the points of Ωt,f are ali-

gned in the principal direction, we have a measure (see section

2.2) which shows if only one source is present or not. That is a

measure which shows if the estimated direction points or not

to a direction of the mixing matrix at frequency f .

To get this principal direction, we compute a Principal

Component Analysis (PCA) on the time-frequency points of

the neighborhood. In other words, we extract the eigenvec-

tor of the highest eigenvalue of the 2 × (2K + 1) matrix

XΩt,f with entries x(t, f). We obtain a principal direction

û(t, f) = [u1(t, f) u2(t, f)]T ∈ C
2 which is translated as

follows : θ̂(t, f) = tan−1
(∣∣∣u2(t,f)u1(t,f)

∣∣∣), φ̂(t, f) = ∠
(
û2(t,f)
û1(t,f)

)
.

2.2. The confidence measure

To have an idea of how likely it is that the unit principal

vector û(t, f) of the PCA onΩt,f corresponds to the direction

of the most active source an(f) at frequency f , we need to

know with what confidence we can trust the fact that a single

source is active in Ωt,f .
For that, we model the STFT coefficients of the most ac-

tive source s in a neighborhood Ωt,f , as well as the contri-

bution of all other sources plus possibly noise n, with cente-

red circular normal distributions. That is s ∼ Nc
(
0, σ2s
)
, and

n ∼ Nc
(
0, σ2nI2

)
. The model for points (t′, f ′) ∈ Ωt,f is :

x(t′, f ′) = an(f)s(t′, f ′) + n(t′, f ′)

So, x(t′, f ′) ∼ Nc (0,Σx), withΣx = σ2nI2+σ
2
san(f)a

H
n (f).

We define the confidence measure as T := λ1
λ2

, where λ1 ≥
λ2 are the eigenvalues of Σx. We show that if λ1 > λ2,
an(f) is the eigenvector of Σx corresponding to λ1, and that

T = 1 + σ2s
σ2n

. So the confidence measure can be viewed as

a signal to noise ratio between the dominant source and the

contribution of the other ones plus noise.

As û(t, f) is computed by PCA on sample ofm := card(Ωt,f )
points, it only provides an estimate of the direction an(f),
with a precision we want to estimate. This precision is defi-

ned by equation (2).

d2(û(t, f),an(f)) := 2 (1− |〈û(t, f),an(f)〉|) (2)

For a large sample size, we show that d(û(t, f),an(f))
converges in law to N

(
0, σ2(T )

)
with

σ2(T ) := 1
m− 1

T
(T − 1)2

(3)

In the Time-Delay estimation, and in the clustering algorithm

we present in next sections, we use the variance of equa-

tion (3). However, as we don’t know the confidence measure

T , we use the empirical confidence measure T̂ computed by

PCA instead. This measure is defined by : T̂ := λ̂1
λ̂2

where

λ̂1 ≥ λ̂2 are the eigenvalues of XΩt,f .
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2.3. Time-Delay estimation

Suppose that only one source n is active If we compute

the (Inverse Fourier Transformation) IFT on a frame t of the

phase part of the estimated point, i.e. ei
bφ(t,f) ≈ e−i2πfδn , we

get a Dirac on the delay δn. Unfortunately, we are not in this

ideal case and several sources are active. So we select a set of

points which have a great chance to belong to the same source,

by selecting points which have an ID close to the ID of a point

having a high confidence. A weighted sum of ei
bφ(t,f) over

the frames is then computed, using the confidence measure

as weight (the goal is to favor points where only one source

is active). Then we get the highest peak of the IFT as delta

estimate : δ̂k = argmaxδn R̂(δn) with

R̂(δn) :=
∫

1∑
t σ

−2(T̂ (t, f))
∑
t

ei
bφ(t,f)ei2πfδn

σ2(T̂ (t, f))
df (4)

σ2(.) is defined in equation (3). If other directions with a si-

milar ID are present, the highest peak will correspond to one

of these directions. By removing points near the direction that

have the highest peak, the other directions can be estimated in

a later iteration. Notice that this delay estimator is a variation

of the GCC-PHAT estimator [6].

3. DEMIX ANECHOIC ALGORITHM

The first step of the algorithm consists in iteratively crea-

ting K clusters by : (1) selecting points (θ̂k, φ̂k, T̂k) with hi-

ghest confidence, (2) estimating the delay δ̂k corresponding

to the cluster with points having θ̂ closed to θ̂k, (3) creating

the cluster by aggregating points near the centroid (θ̂k, δ̂k).
The second step is to re-estimate the direction (θ̂k, δ̂k) of each

cluster, and finally to eliminate non significant clusters and

keep N̂ ≤ K clusters which centroids provide the estimated

directions of the mixing matrix.

3.1. Cluster Creation and Delay Estimation

DEMIX iteratively creates K clusters Ck ⊂ P –where P
is the set of all points– starting from K = 0, PK = P0 = P :

1. find the point (θ̂K , φ̂K , T̂K) ∈ PK with the highest

confidence ;

2. create a temporal cluster C̃K with all points (θ̂, φ̂, T̂ ) ∈
PK which have their θ̂ “sufficiently close” to (θ̂K , T̂K) ;

3. estimate δ̂K with our Time-Delay estimation method

applied to C̃K points ;

4. – if there is not a “well identified” δ̂K : reject the clus-

ter, PK+1 := PK \ C̃K ;

– else, create the clusterCK with all points (θ̂, φ̂, T̂ ) ∈
PK “sufficiently close” to (θ̂K , δ̂K , T̂K), andPK+1 :=
PK \ CK ;

5. if PK+1 = ∅, stop ; otherwise increment K ← K + 1
and go back to 1.

Expressions “sufficiently close” rely on the model developped

in section 2.2. Expression “sufficiently close” to (θ̂K , T̂K) in

step 2, includes all points (θ̂, φ̂, T̂ ) ∈ PK such that
∣∣∣θ̂ − θ̂K

∣∣∣ ≤
σ1(T̂K), where the expression of σ1(T̂K) will be detailed in

a futur paper. Expression “sufficiently close” to (θ̂K , δ̂K , T̂K)
in step 4 includes all points (θ̂, φ̂, T̂ ) ∈ PK such that
1
Δf

∫
d(û, ûK)df ≤ σ2(T̂ , T̂K) where Δf is the frequency

domain, d is the distance defined in (2), û = [cos(θ̂) sin(θ̂)eibφ]T ,

ûK = [cos(θ̂K) sin(θ̂K)e−i2πbδKf ]T , and σ2(T̂ , T̂K) is defi-

ned in equation (8) of paper [5].

Expression there is a “well identified” δ̂K in step 4 means

that, no other peaks higher than -3dB of δ̂K appears in the

Time-Delay estimation function.

3.2. Direction Estimation and Cluster Elimination

The direction re-estimation, and the cluster elimination

steps are similar to the 2d and 3d step of the first version of

DEMIX Instantaneous [5]. The main difference is that a new

measure of centroid distance based on equation (2) is used to

consider the phase difference induced by each direction which

changes with frequency.

4. EXPERIMENTS

4.1. Experimental protocol

We compare ability of DEMIX Anechoic, DEMIX Instan-

taneous, and DUET, to estimate the directions of some ane-

choic mixtures. The RoomSim MATLAB simulation of room

was used in order to generate anechoic mixing matrices. Two

cardiod microphones were placed at 20 cm from each other,

and their directions crossed with a right angle. Sources were

placed on a cercle centered in the middle of the two micro-

phones. Sources were in the same plane as microphones, equi-

distant from each other, as distant as possible, and symmetric

with respect to the bisector of the two microphone positions

(figure 1).

The source selection process was the same as in the DE-

MIX Instantaneous paper [5] (polish voices sampled at 4kHz).

The experience consisted in estimating the performance of al-

gorithms by changing the number of sources from N = 2, to

N = 7.
A first measure of performance was the rate of success in

the estimation of the number of sources. we showed that DE-

MIX Anechoic estimates the number of sources better than

DEMIX Instantaneous (see figure 3). However DEMIX Ane-

choic always fails whenN > 6. Note that we cannot compare

these results with DUET, because DUET doesn’t estimate the

number of sources and takes it as an input.

III ­ 747



Fig. 1. room configuration forN = 7 sources surrounding the

stereo microphone pair

n 1 2 3 4 5 6 7

θn 0.12 0.13 0.56 0.78 1.01 1.44 1.45

δn -1 -2.2 -1.8 0 +1.8 +2.2 1

Fig. 2. Tab shows the θ (in radians) and δ (in samples) para-

meters corresponding to the room configuration of figure 1

In case of success, we could also measure the means over

test mixtures of the direction distance mean error (DDME),

which is the mean distance between true directions and esti-

mated ones.

DDME(U,A) = 1
N

∑N
i=1

∫
f
d(Ûi(f),Ai(f))df , where

Ûi(f) = [cos(θ̂i) sin(θ̂i)e−i2πbδif ]T is the estimated direc-

tion corresponding to the direction Ai(f). Figure 4 shows

that DEMIX Anechoic obtained a lower DDME error than

DEMIX Instantaneous and than DUET. DUET worked with a

weighted K-Means algorithm as implemented by its authors

[1]. Since the DDME for DEMIX can only be measured when

a correct number of sources is estimated, it was not compu-

ted when N > 6 with DEMIX Anechoic, and for N = 2
and N > 5 with DEMIX Instantaneous. In any cases DDME

for DUET was computed with the same test mixtures as these

used with DEMIX Anechoic.

Two major reasons can explain why DEMIX Anechoic

obtained best result as DUET. First delays that are higher than

one sample result in ambiguous delay estimations for DUET

contary to DEMIX Anechoic. Second directions that are near

the poles (θ is near 0 or π/2) are badly estimated by DUET

because their ID parameter is asymmetric and especially in-

accurates for directions located near the poles.

nb of sources 2 3 4 5 6 7

DEMIX Inst 0 65 30 35 0 0

DEMIX Anec 90 100 95 65 5 0

Fig. 3. good number of sources estimation ratio (in %)

2 3 4 5 6

10
−3

10
−2

10
−1

number of sources

er
ro

r

DUET
DEMIX Inst
DEMIX Anec

Fig. 4. average DDME as a function of the number of sources

5. CONCLUSION

We have presented a new algorithm called DEMIX Ane-

choic, to estimate the number of sources, and the mixing di-

rections for under-determined anechoic mixtures. DEMIX Ane-

choic exploits locally the sparsity of the time-frequency repre-

sentation, and extracts the parameters of the mixing model via

clustering, using a confidence measure. The confidence mea-

sure allows to reliably detect regions of time-frequency points

where essentially one source is active. As opposed to DUET,

DEMIX Anechoic estimates by itself the number of sources,

and can estimate delays that are higher than one sample. Mo-

reover, by considering each pair of microphones, the problem

originally designed for two microphones, can be extended to

M microphones.
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