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ABSTRACT

The linear, median, myriad ltering structures are statisti-
cally related to the maximum likelihood (ML) estimates of
location under Gaussian, Laplacian, and Cauchy statistics,
respectively. In this paper, we propose a ltering structure
based on the ML estimate of the constructed and so–called
meridian statistics. Analysis and simulations presented here
indicate that the proposed ltering structure exhibits charac-
teristics more robust than that of mean, median and myriad
ltering structures.

Index Terms— nonlinear estimation, maximum–likelihood
estimation, ltering

1. INTRODUCTION

Given a set of observations (input samples), {xi|
N
i=1}, anM–

estimate of their common location, β, is given by [1]

β̂ = argmin
β

[
N∑

i=1

ρ(xi − β)

]
(1)

where ρ(·) is the cost function of the M–estimators. Maxi-
mum likelihood location estimates form a special case ofM–
estimators, with the observations being independent and iden-
tically distributed and ρ(u) = − log f(u), where f(u) is the
common density function of the samples. The weighted mean
(linear), weighted myriad and weighted median lter families
are well–derived fromMaximum Likelihood location estima-
tor under Gaussian, Cauchy and Laplacian statistics, respect-
fully [2, 3]. The cost functions to minimize, in these cases,
are given by ρ(u) = u2, ρ(u) = log{γ2+u2}, where γ is the
linearity parameter [3] and ρ(u) = |u| for mean, myriad and
median estimators, respectively.
In this paper, we focus on the well–established statisti-

cal relation between the Gaussian and Cauchy distributions,
indicating that the ratio of two independent Gaussian RVs is
Cauchy distributed. We note that the Cauchy distribution is
a special case of the GCD family corresponding to p = 2,
where p is the tail parameter. An analogous statistical re-
lationship is constructed here for the Laplacian distribution,
where the distribution function of the RV formed as the ra-
tio of two independent Laplacian distributed RVs is derived.

Interestingly, it is shown that the obtained statistics, referred
to as the Meridian distribution, is also a member of the GCD
with p = 1. Hence, a connection between the GGD and GCD
families is formed. The maximum likelihood estimate under
the new statistics is analyzed, where the cost function, in this
case, is given by ρ(u) = log{δ + |u|}, with δ controlling the
robustness of the meridian estimator. The fact that the merid-
ian estimator is likelihood–based guarantees that the estimate
is (at least asymptotically) unbiased, consistent and ef cient
in Meridian statistics.

2. STATISTICAL PROCESSES, MAXIMUM
LIKELIHOOD ESTIMATION AND FILTERING

A broad range of statistical processes can be characterized by
the generalized Gaussian probability density function (PDF).
The Gaussian (k = 2) and Laplacian (k = 1) density cases,
where k denotes the tail parameter, are of special interest.
Consider the problem of estimating the constant amplitude
signal β from the samples xi, xi+1, . . . , xi+N−1 of noisy ob-
servation data {x(i)}. Let xi = β + ηi, where the ηi terms
are independent and identically distributed zero–mean noise.
The ML estimate of location under Gaussian and Laplacian
statistics are the mean and median estimators [1–3]. These
estimators can be viewed as mean and median ltering struc-
tures operating on window basis.
The mean and median ltering structure is extended to

admit weights considering a set of N independent samples
xN = x1, x2, . . . , xN each obeying the Gaussian or Lapl-
cian distribution with (possibly) different variances σ2

i . The
weight positivity constraining the lters to smoothers can, as
in the FIR lter case, be relaxed to enable more general lter-
ing characteristics utilizing the sign–coupling approach [3].
The generalized Cauchy distributionwas proposed byMiller

and Thomas in 1972 [4]. The generalized Cauchy distribution
is used in several studies of impulsive radio noise [3, 4]. The
generalized Cauchy PDF is given by

f(x) = a(γp + |x|p)−2/p (2)

with a = pΓ(2/p)γ/(2(Γ(1/p))2). In this representation, γ
is the scale parameter and p is the tail constant. This repre-
sentation includes the standard Cauchy PDF as a special case
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(p = 2). For p < 2, the PDF’s tail decays slower than in the
Cauchy case, resulting in a heavier–tailed PDF. In the follow-
ing, the well–established statistical relation between Gaussian
and Cauchy distributions is discussed. Also, the recently pro-
posed myriad ltering structure [3], which is based on the ML
estimate under Cauchy statistics is discussed.

Proposition 1 The RV formed as the ratio of two independent
zero–mean Gaussian distributed RVs, U and V , with vari-
ances σ2

U and σ
2
V , respectively, is Cauchy distributed (gen-

eralized Cauchy distribution with p = 2) with γ = σU/σV .

Remark 1 It should be noted that the original authors de-
rived the myriad lter starting fromα–Stable distributions [5].
They noted that there is only two closed–form expression for
α–Stable distributions, α = 2 and α = 1 corresponding to
Gaussian and Cauchy distributions, respectively. This origi-
nal development [3] did not mention or utilize the statistical
relation between Gaussian and Cauchy distributions.

As in the previous cases, the sample myriad is generalized
to admit weights [3]. Also, the weight positivity constraint re-
stricting the lters to be smoothers is relaxed to enable more
general ltering characteristics [3]. Next, a relationship simi-
lar to that between the Gaussian and Cauchy statistics is con-
structed here for the Laplacian case. That is, the distribution
of the RV formed as the ratio of two independent Laplacian
RVs is considered.

Proposition 2 The RV formed as the ratio of two independent
zero–mean Laplacian distributed RVs, U and V , with scale
parameters λU and λV , respectively, is a member of the GCD
family, with p = 1 and γ = λU/λV , and is referred to as the
meridian distribution.

Proof 1 Let X be the RV formed as the ratio of two RVs, U
and V :X = U/V . The PDF of the RV X , fX(·), is given
by: fX(x) =

∫∞
−∞

|v|fU,V (xv, v)dv, where fU,V (·, ·) is the
joint PDF of U and V . Considering the independent case
and solving for RVs U and V with Laplacian PDFs, fU (x) =
1/(2λU) exp{−|x|/λU} and fV (x) = 1/(2λV ) exp{−|x|/λV },
performing somemanipulations and setting δ = λU/λV yields:

fM (x) =
δ

2

1

(δ + |x|)2
. (3)

A careful inspection of the observed distribution shows that
fM (·) belongs to the generalized Cauchy distribution family,
corresponding speci cally to the p = 1 case. We refer to
fM (·) as the Meridian distribution.

Remark 2 It is surprising to note that the ratio of two gen-
eralized Gaussian distributions, with k = 2, yields the gen-
eralized Cauchy distribution, with p = 2. Also, the ratio of
two generalized Gaussian distributions, with k = 1, yields
the generalized Cauchy distribution, with p = 11.

1We recently established the generalization of this statistical relation for
any k

3. MERIDIAN FILTERING

In the following, location estimation from observed samples
underMeridian statistics is considered and the ltering prob-
lem is related to ML estimation in an analogous fashion to the
previous Gaussian, Laplacian and Cauchy cases.

Theorem 1 Consider a set of N independent samples xN

each obeying the Meridian distribution with common scale
parameter δ. The ML estimate of location, β, or sample
meridian, is given by

β̂ = argmin
β

[
N∑

i=1

log{δ + |xi − β|}

]
� meridian{xN ; δ}

(4)
where δ is referred to as the medianity parameter.

Proof Sketch 1 Replacing the Meridian distribution for each
sample in the ML formulation, utilizing basic properties of
the argmax function and noting that maximizing the fraction
is equivalent to minimizing the denominator, and taking the
natural log of the above yields the nal result.

The performance of the meridian ltering is directly re-
lated to the objective function that arises naturally from the
PDF. The following proposition presents several key proper-
ties of the meridian objective function. The properties de-
scribed below are illustrated by Fig. 1 (a) and proved in [6],
which illustrates the objective function, Q(β), that results
from a set of observed samples in the window size of N = 7
case.

Proposition 3 [6] Let {x(i)|
N
i=1} denote the order statistics

of the input vector xN , with x(1) the smallest and x(N) the
largest. Also, de ne Q(β) �

∑N
i=1 log{δ + |xi − β|}. The

following statements hold:

1. Q′(β) > 0 for β > x(N), andQ′(β) < 0 for β < x(1).

2. The objective function Q(β) is concave in x(i) < β <
x(i+1) for i = 1, 2, . . . , N − 1.

3. The objective function Q(β) has a nite number of lo-
cal minima [input samples].

4. The meridian β̂ is one of the local minima ofQ(β), i.e.,
one of the input samples.

The meridian estimator output is hence the input sample
that yields the smallest Q(β) function value. The selective
nature of the meridian estimator, shared with the median es-
timator, facilitates the lter output computation which is for-
mulated as β̂ = argminβ∈xN

Q(β).

Property 1 (Median Property) Given a set of samples xN ,
the sample meridian β̂ converges to the sample median as
δ →∞. This is, limδ→∞ β̂ = median{xN}.
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Fig. 1. (a) Sketch of a typical meridian objective function:
Input samples are x7 = [4.9, 0.0, 6.5, 10.0, 9.5, 1.7, 1] and
δ = 1. (b) IFs for (solid:) the mean, (dashed:) the median,
(dotted:) the myriad, and (dash–dotted:) the meridian.

Proof 2 Using the properties of the argmin function, the es-
timator can be expressed as

β̂ = argmin
β

[
N∑

i=1

log

{
1 +

|xi − β|

δ

}δ
]
. (5)

Since limδ→∞ log {1 + |xi − β|/δ}
δ
= exp {|xi − β|}, and

the exponential function exp{·} is monotonically increasing,
it follows that β̂ = argminβ

[∑N
i=1 |xi − β|

]
.

It is important to emphasize that the family of meridian es-
timators subsumes the sample median as a limiting case. This
simple fact makes the meridian lter class inherently more ef-
cient than (or at least equally ef cient to) median lters over
all noise distribution, including the Laplacian.
As the meridian moves, in function, away from the me-

dian region (large values of δ) to lower medianity values, the
estimator becomes more robust to the presence of impulsive
noise. In the limit, when δ tends to zero, the meridian esti-
mator treats every observation as a possible outlier, assigning
more credibility to the most repeated values in the sample set.

Property 2 (Mode Property) [6] Given a set of samples xN ,
the sample meridian β̂ converges to a mode–type estimator as
δ → 0. This is,

lim
δ→0

β̂ = arg min
xj∈M

⎡
⎣ N∏

i=1,xi �=xj

|xi − xj |

⎤
⎦ (6)

whereM is the set of most repeated values.

The in uence function (IF) of an estimator determines the
effect of contamination on the estimator. To further charac-
terize M–estimates, it is useful to list the desirable features of
a robust IF [1]: 1) B–robustness. An estimator is B–robust
if the supremum of the absolute value of the IF is nite, 2)
Rejection Point. The rejection point, de ned as the distance
from the center of the IF to the point where the IF becomes
negligible, should be nite.

The IF for the sample mean, median and myriad can be
shown to beψ(x) = 2x, ψ(x) = sgn(x) andψ(x) = 2x/(γ2+
x2), respectively. The IF of the sample meridian is discussed
in the following.

Proposition 4 The IF of the meridian estimator is given by
ψ(x) = sgn(x)/(δ + |x|).

The IFs for the sample mean, median, myriad and merid-
ian are depicted in Fig. 1 (b). The mean is clearly not B–
robust and its rejection point is in nite. On the other hand, a
gross error has a limited effect on the median estimate. While
the median is B–robust, its rejection point, like the mean, is
not nite. Thus the median estimate is always affected by out-
liers. The myriad estimate is clearly B–robust and the effect
of the errors decreases as the error increases. The meridian
estimate is also B–robust, and in addition, the rejection point
is smaller than that of myriad as it has a higher IF decay rate.
This indicates that the meridian is more robust than the myr-
iad.
In addition to desirable IF features, the meridian possesses

the followings properties important in signal processing ap-
plications [6]: Outlier rejection, i.e. limxN→±∞ β̂(xN ) =

β̂(xN−1), no overshoot/undershoot, and, shift and sign in-
variance.

Theorem 2 [6] Given a set of N independent samples xN ,
each obeying the Meridian distribution with varying scale pa-
rameters υi = δ/hi, the ML estimate of location, or weighted
meridian, is given by

β̂ = argmin
β

[
N∑

i=1

log{δ + hi|xi − β|}

]
� meridian{h�xN}

(7)
where � denotes the weighting operation in the minimization
problem.

All the properties given for the meridian estimator are eas-
ily extended to the weighted meridian estimator case. The
weighted meridian lter is also extended to admit real–valued
weights utilizing the sign–coupling approach [6]. Table 1
summarizes the M–smoothers (weighted M–estimators) for
existing and proposed lter families discussed in the paper.
The (weighted) meridian ltering structure hence completes
the missing link of the estimator/smoother quadruplet which
is now composed of: (weighted) mean, (weighted) median,
(weighted) myriad and (weighted) meridian.

4. NUMERICAL RESULTS

Recall that the meridian operator derives its optimality from
the algebraic–tailed Generalized Cauchy distribution for p =
1, a distribution referred to as the Meridian. Thus in such
environments, the meridian is the optimal estimator. Exper-
iments validating this expected result have been carried out,
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Table 1. M–smoother (weighted M–estimator) objective
functions and outputs for various lter families [�: Replica-
tion in median, ◦: weigthing in myriad operators.]

Cost Function Filter Output
N∑

i=1

hi(xi − β)
2 mean{h · xN}

N∑
i=1

hi|xi − β| median{h � xN}

N∑
i=1

log{γ2 + hi(xi − β)
2} myriad{h ◦ xN ; γ}

N∑
i=1

log{δ + hi|xi − β|} meridian{h � xN ; δ}

source transmitter + sampler estimator
B Bs(t) 

n(t)

r(t) r(kT) B̂

Fig. 2. The baseband communication model.

but are not presented due to their expectation nature and space
constraints. Rather, results are presented for the commonly
utilizedα–Stable density family, which is also algebraic–tailed
providing a fairer comparison.
Consider the baseband communication model [7] given in

Fig. 2. Suppose that β (real) is to be communicated over the
channel. Denoted as s(t) is the combined impulse response
of the transmitter and channel, and take the pulse βs(t) to
be corrupted by additive white Meridian noise. The received
pulse is then given by [7]: r(t) = βs(t) + n(t), which after
sampling at rate 1/T corresponds to the sequence r(kT ) =
βs(kT ) + n(kT ). Taking the common case assumption that
s(kT ) �= 0 only for k ∈ K , the communications goal is to
estimate β using the samples βs(kT ) + n(kT ). Note that for
a xed k, r(kT ) is meridian distributed centered around the
βs(kT ). By the whiteness assumption, the random variables
r(kT )−βs(kT ) are independent with identical meridian dis-
tributions. This implies that the ML estimate for β is given by
β̂ = argminβ

[∏
k∈K (δ + |r(kT )− βs(kT )|)

]
. Taking the

natural log of the above and rewriting the sum yields

β̂ = argmin
β

[∑
k∈K

log

{
δ + |s(kT )|

∣∣∣∣r(kT )s(kT )
− β

∣∣∣∣
}]

(8)

fromwhich it can be seen that theML estimate is the weighted
meridian of normalized received signal values, where pulse
shape determines the weights. Thus, we de ne the matched
meridian lter: β̂ = meridian {|s(kT )| � r(kT )/s(kT ); δ},
that is matched to the pulse shape s(kT ), k ∈ K , as the value
β minimizing (8).

Table 2. Matched Linear (MLi), Median (MMe), Myriad
(MMy) and Meridian (MMer) lters output MAEs and MSEs

MLi MMe MMy MMer
MAE 5.9215× 103 0.2080 0.1605 0.1121
MSE 3.2949× 107 0.1687 0.0520 0.0380

To evaluate and compare the matched meridian lter to its
linear, median, and myriad counterparts, 10000 Gaussian dis-
tributed {β(i) : i = 1, 2, . . . , 10000} parameters are gener-
ated, sent through the baseband communication channel, sam-
pled with K = 21 and ltered with matched linear, median,
myriad and meridian lters to obtain the estimates {β̂(i) :
i = 1, 2, . . . , 10000}. The corrupting channel noise is α–
Stable distributed with α = 0.4. The pulse carrying the sym-
bol is taken to be rectangular. The mean absolute and squared
errors of the matched lter outputs are tabulated in Table 2.
It is clear from the results that the matched meridian lter
provides the best performance under both the mean absolute
(MAE) and mean squared error (MSE) criterions. The perfor-
mance improvement provided by the matched meridian lter
especially stands out in the MSE case since this criteria is
sensitive to outliers.
The numerical examples showing the performance im-

provements of meridian structure overmean, median andmyr-
iad counterparts in α < 1 environments, involving a mo-
tivating powerline communications and a multi–tone signal
processing example [6], are excluded here due to space con-
straints.
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