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ABSTRACT

In this paper we propose an alternative way to develop-

ing a robust and adaptive sequential algorithm for estimat-

ing the unknown impulse response of a linear system. Our

approach is based on formulating the problem as a max-

imum penalized likelihood (MPL) problem. We use the

Fair penalty function as the generalized log-likelihood and

a quadratic function to play a regularization role. The MPL

formulation also leads naturally to adaptive schemes for learn-

ing the regularization and scale parameters. The robust-

ness of the proposed algorithm to impulsive noise is demon-

strated through mathematical analysis and numerical simu-

lations.

Index terms: robust sequential learning, maximum pe-

nalized likelihood

1. INTRODUCTION

An application of supervised learning in signal processing

is to identify a linear system of unknown impulse response.

In an iterative formulation of the problem, we have at time

n the available data, denoted Dn = {yn,xn}, and the ob-

servation model

yn = xT
nw + rn (1)

where w is an (M × 1) vector, xn is a (M × 1) input sig-

nal vector, yn is the system output and rn is the indepen-

dent and identically distributed noise with a known distri-

bution function. We also have the estimate of the system

impulse response from the (n-1)th iteration, denoted wn−1.

The problem is thus to determine an optimal estimation, de-

noted wn, based on the available information. A classical

solution to this problem is the LMS algorithm [1]

wn = wn−1 + μēnxn. (2)

where μ is called the step size and ēn = yn − xT
nwn−1.

A potential problem for the LMS algorithm is that it is

not robust to impulsive noise. Let us consider a case in

which wn−1 is quite close to w, and rn is the impulsive

noise. As such ēn is dominated by the noise and the second

term of (2) is large. As a result wn will be forced to move

away from wn−1. Various types of robust adaptive filters,

including robust LMS-type of algorithms [2–4], have been

studied to tackle this problem. Robust LMS-type algorithms

are in the following general form

wn = wn−1 + Φ(|ēn|)sign(ēn)xn (3)

where Φ(|ēn|) is a nonlinear function of |ēn|. One common

characteristic of this nonlinear function is that its value is

reduced or saturated when |ēn| is large indicating a possi-

ble case of impulsive noise. For example, the signed nor-

malized LMS (NLMS) algorithm is given by Φ(|ēn|) =
γ/(xT

nxn) where γ is a constant. We can also see that

when Φ(|ēn|) = γ|ēn| and Φ(|ēn|) = γ|ēn|/(xT
nxn), (3)

becomes the LMS algorithm and the NLMS algorithm [1],

respectively. A recent development of robust LMS-type of

algorithm is the combination of two adaptive filters [5].

In this paper, we formulate the optimal estimation prob-

lem as a step-wise maximum penalized likelihood (MPL)

problem and develop a robust sequential learning in which

the parameters are adaptively updated. It is a step-wise algo-

rithm, because at each time n when the training is received,

we determine a new optimum estimate by solving an MPL

problem. The robustness to impulsive noise is achieved by

using a robust penalty function as the log-likelihood func-

tion. The so-called Fair penalty function is studied in this

paper because it has only one parameter and has everywhere

continuous derivatives of first three orders. It is recom-

mended as the one of the best penalty functions [6]. Learn-

ing algorithm using Huber’s penalty function is presented

in [7]. On the other hand, we use a quadratic penalizing

function as a regularization term to stabilize the algorithm.

The algorithmic development is presented in section 2. In

section 3, we present numerical examples which shows that

the proposed algorithm has the desirable robust characteris-

tics and its initial learning performance is close to that of a

robust RLS-type of algorithm [8] and is better than that of

an LMS-type of algorithm [5].
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2. THE SEQUENTIAL LEARNING ALGORITHM

2.1. Step-wise maximum penalized likelihood

At time n, we receive the training data Dn = {yn,xn} and

have the optimal estimate at time n − 1, denoted wn−1.

Then the objective function of maximum penalized likeli-

hood problem can be stated as follows

Pn(w) = − log p(yn|w) +
1
α
F(w;wn−1) (4)

where log p(yn|w) is the log-likelihood, α is a parameter

and F(w;wn−1) is the penalty function. The optimum es-

timate at time n is determined by solving the following op-

timization problem

wn = arg min
w
Pn(w) (5)

In this paper, we choose the L2 norm as the penalty function

to simplify the development

F(w;wn−1) =
1
2
(w −wn−1)T (w −wn−1) (6)

The penalty function plays a role of regularization. The pa-

rameter α balances the two potentially conflicting require-

ments from the log-likelihood function and the penalty func-

tion: finding an estimate that fits the training data reason-

ably well and an estimate that is not too far away from the

previous estimate.

To develop a robust algorithm, we regard the robust penalty

function, denoted ρ(rn), as the generalized negative log-

likelihood such that

ρ(rn) = − log p(yn|w) (7)

In this paper, we consider the Fair penalty function [6] given

by

ρ(t) = σ2

[
| t
σ
| − log(1 + | t

σ
|)

]
(8)

The gradient of the objective function is given by

∇Pn(w) = −ψ(rn)xn +
1
α

(w −wn−1) (9)

where ψ(t) = ρ
′
(t) =

t

1 + |t|/σ . The solution to the

optimization problem stated in (5) satisfies

∇Pn(w)|w=wn
= −ψ(ên)xn+

1
α

(wn−wn−1) = 0 (10)

where ên = yn − xT
nwn. From (10), it is easy to show that

wn = wn−1 + αψ(ên)xn (11)

Since wn depends onψ(ên), we need to determine ên which

is given by

ên = ēn − αψ(ên)xT
nxn (12)

where ēn = yn−xT
nwn−1. When ên is determined, we can

use (11) to calculate the optimum estimate.

2.2. An approximate solution

Although there is a closed form solution for ên by solving

(12), the solution is quite complicated and does not have

a clear interpretation. In this section, we propose to use

an approximation of the penalty function ρ(rn) in order to

have a simpler solution. More specifically, we can Taylor

expand ρ(rn) around ēn and use a quadratic approximation

as follows

ρ̂(rn) = ρ(ēn)+ψ(ēn)(rn−ēn)+
1
2
ϕ(ēn)(rn−ēn)2 (13)

where ϕ(ēn) = ρ
′′
(ēn) = (1 + |ēn|/σ)−2

. An approxima-

tion of the cost function Pn(w) is then given by

P̂n(w) = ρ̂(rn) +
1
2α

(w −wn−1)T (w −wn−1) (14)

We first calculate the gradient and the Hessian as follows

∇P̂n(w) = −ψ(ēn)xn−ϕ(ēn)(rn−ēn)xn+
1
α

(w−wn−1)
(15)

and

∇∇P̂n(w) = ϕ(ēn)xnxT
n +

1
α
I (16)

Since ϕ(ēn) > 0, the Hessian is positive definite. Thus, this

objective function is strictly convex and the minimizer of

P̂n(w) is a global minimum. Let wn be the minimizer of

P̂n(w) such that∇P̂n(wn) = 0. From (15), we can write

wn = wn−1 + α[ψ(ēn) + ϕ(ēn)(ên − ēn)]xn (17)

Left-multiplying both sides of the above equation by xT
n ,

then subtracting both sides by yn, we obtain

ên = ēn − αψ(ēn)xT
nxn

1 + αϕ(ēn)xT
nxn

(18)

Substitute (18) into (17), we have

wn = wn−1 +
αψ(ēn)xn

1 + αϕ(ēn)xT
nxn

(19)

Comparing (11) with (19), we can see that using the quadratic

approximation for ρ(rn) results in an approximation ofψ(ên)
by ψ(ēn)/(1 + αϕ(ēn)xT

nxn).

2.3. Robustness

To see the robustness of this learning algorithm, we rewrite

(19) in the same form as (3). In this case, we have

Φ(|ēn|) = α|ēn|/
(
ε+

α

ε
xT

nxn

)
(20)

where ε = 1 + |ēn|/σ. Since Φ
′
(|ēn|) = dΦ(|ēn|)

d|ēn| > 0
and lim|ēn|→∞ Φ(|ēn|) = 1, we can see that the value of

Φ(|ēn|) nonlinearly increases as |ēn| increases. Its value

saturated when |ēn| is very large. As such, the learning al-

gorithm avoids making large mis-adjustment when |ēn| is

large.
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2.4. An adaptive learning algorithm

We propose an adaptive update for the regularization para-

meter α and the scaling parameter σ. We can rewrite (19)

as

wn = wn−1 +
αn−1ēnxn

ε+
αn−1

ε
xT

nxn

(21)

where ε = 1 + |ēn|/σn−1. To update the regularization

parameter, we can regard the penalty function as the log-

arithm of a Gaussian distribution. As such, α is naturally

interpreted as the variance. We propose the update for it as

follows

αn = βαn−1 + (1− β)
αn−1|ēn|

∑M
i=1 |xn(i)|

ε+
αn−1

ε
xT

nxn

(22)

where xn(i) is the ith element of the input vector xn. We

can see that as the learning process proceeds, it is expected

that in an impulsive noise-free case, ēn becomes smaller.

From (21) we can see that when αn−1 → 0, there is very

little update. This may be undesirable in the early stage of

the learning process. Thus to prevent it from approaching

zero too early, after the update given by (22), we can force

it to a pre-determined value αmin if αn < αmin. This is

implemented as: αn = max{αn, αmin}.
Similarly, we propose the update of the scaling parame-

ter as follows

σn = βσn−1 + (1− β) min{3σn−1, |ēn|} (23)

where the term min{3σn−1, |ēn|} takes the smaller value of

the two as the output. This operation provides the protec-

tion against the effect of impulsive noise in estimating the

scaling parameter.

3. NUMERICAL EXAMPLES

3.1. Settings of the simulations

To study the robustness of the proposed algorithm, we set

up the following simulation experiments. The impulse re-

sponse (w) of the system to be identified is given by w =
[1 2 3 4 5 4 3 2 1]T /10. At time n, a random input sig-

nal vector xn is generated as xn = randn(9, 1) and yn

is calculated using (1). The noise rn is generated from a

mixture of two zero mean Gaussian distributions with vari-

ance s1 = 0.1 and s2 = 5, respectively. This is simu-

lated in Matlab by: rn = s1 * randn(4000,1) + s2 *

randn(4000,1) .* (abs(randn(4000,1) > T). The

threshold T controls the percentage of impulsive noise. In

our simulations, we set T = 2.5 which corresponds to about

1.2% of impulsive noise. In Fig. 1, we plot the noise used in

our simulations. The performance of an algorithm is mea-

sured by the distance between the two vectors ||w −wn||2
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Fig. 1. The noises used in our simulations.

which is a function of n and is called the learning curve.

Each learning curve presented in the following is the result

of averaging of 100-run of the program with the same addi-

tive noise and impulse response.

3.2. Simulation results

There are a number of parameters in the proposed algo-

rithm. Through simulation study, we observe that the per-

formance of the algorithm is not sensitive to variations in

setting the initial values of the scaling parameter σ0 and the

regularization parameter α0. We set σ0 = α0 = 5 and

w0 = 0. The parameter β controls the rate of adaptation

for σn and αn. This indirectly controls the learning perfor-

mance of proposed algorithm. In Fig. 2, we test the case of

fixing β = 0.01 and using three different settings of the pa-

rameter αminsupervisor.. We observe that this parameter

controls a trade-off between the learning rate and the steady

state with αmin = 0.01 being a good choice. In Fig. 3, we

test the case of fixing αmin = 0.01 and using three different

settings of the parameter β. We observe that β = 0.9 is a

good choice.

Next, we compare the learning performance of the pro-

posed algorithm with a recently published RLM algorithm

[8] using the suggested values of parameters. The RLM

algorithm is a robust RLS type of algorithm. It is com-

putationally more expensive than the proposed algorithm.

We also compare the performance of the proposed algo-

rithm with that of a recently published algorithm (called

CAF algorithm) which adaptively combines the NLMS and

the signed NLMS algorithms using the suggested settings

of parameters [5]. Results are presented in Figure 4. We

can see that the performance of the proposed algorithm is

comparable to that of the CAF and the initial learning rate

is close to that of the RLM algorithm.

III ­ 739



0 500 1000 1500 2000
10−5

10−4

10−3

10−2

10−1

100

α
min

 = 0.005

α
min

 = 0.01

α
min

 = 0.05

Fig. 2. The learning curves for the proposed algorithm un-

der three different settings of the parameter αmin when

β = 0.01.
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Fig. 3. The learning curves for the proposed algorithm un-

der three different settings of the parameter β when αmin =
0.01.
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Fig. 4. A comparison of the learning curves of the proposed

algorithm with those of a recently proposed RLM algorithm

and the CAF algorithm.

4. CONCLUSIONS

In this paper we have presented an adaptive sequential learn-

ing algorithm which is robust to impulsive noise. The de-

velopment is based on formulating the problem as a maxi-

mum penalized likelihood (MPL) problem which also per-

mits us to develop an adaptive scheme to update the two

model parameters. We have demonstrated the robustness of

the proposed algorithm through mathematical analysis and

numerical simulations. We note that the MPL approach is

a general approach for developing sequential learning algo-

rithms. It is thus important to extend this work to other type

of robust penalty functions. Since the Bayesian approach is

more general than the MPL approach, it is also important

to study robust sequential learning algorithm within the full

Bayesian framework.
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