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ABSTRACT

Nuclear quadrupole resonance (NQR) is a spectroscopic technique
that can be used to detect many high explosives and narcotics. Un-
fortunately, the measured signals are weak, thereby inhibiting the
widespread use of the technique. Current state-of-the-art detectors,
which exploit realistic NQR data models, assume that the complex
amplitudes of the NQR signal components are known, to within
a multiplicative constant. However, these amplitudes are typically
prone to some level of uncertainty, thus leading to performance loss
in these algorithms. Herein, we develop a frequency selective algo-
rithm, robust to uncertainties in the assumed amplitudes, that offers a
signi cant performance gain over current state-of-the art techniques.

Index Terms— Signal detection, robust methods, nuclear
quadrupole resonance

1. INTRODUCTION

Nuclear Quadrupole Resonance (NQR) is a radio frequency (RF)
spectroscopic technique that can be used to detect the presence of
quadrupolar nuclei, such as the 14N nucleus prevalent in many high
explosives and narcotics [1–4]. The sample is irradiated with a spe-
cially designed sequence of RF pulses and the responses, between
pulses, are then measured. The NQR response is highly compound
speci c, making the technique an important detection tool. Unfor-
tunately, the success of NQR has been hindered by the low signal-
to-noise ratio (SNR) signals that are typically observed, especially
in the low frequency region, for compounds such as trinitrotoluene
(TNT) [5]. Current state-of-the-art detectors, which exploit real-
istic NQR signal models, assume the complex amplitudes of the
NQR signal components are known, to within a multiplicative con-
stant [5–9]. These complex amplitudes are typically obtained from
laboratory measurements; however, several factors may cause differ-
ences between the assumed complex amplitudes and those observed.
For example, in a landmine detection scenario, the eld at the sample
will vary due to varying distances between the antenna and the mine;
consequently, for the same pulse sequence parameters and RF power,
the ip-angle(s) of the excited resonant line(s) will also vary, caus-
ing variations in the NQR signal amplitudes. Typically, such varia-
tions will reduce the performance of these detectors (see also [10]).
Therefore, we here proceed to derive a robust algorithm that nds the
best complex amplitude vector within a hypersphere of uncertainty
around a speci ed complex amplitude vector. The approach allows
for inclusion of prior information, both via the speci ed complex
amplitude vector and via the selection of the size of the uncertainty
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region. We also propose a method for selecting the size of the uncer-
tainty region, based upon knowledge of the uncertainties of the com-
plex amplitudes. Furthermore, to reduce computational complexity
and provide robustness to RF interference, the detector is formed
using only those spectral bands where the NQR signal components
are expected to lie. Extensive numerical analysis using both simu-
lated and measured data, obtained from a sample of TNT, indicate
that the proposed detector offers a signi cantly increased detection
performance as compared to current state-of-the-art detectors.

2. DATA MODEL

In [5–7], a model for the NQR echo train, as produced by a pulsed
spin locking sequence, was presented. The NQR signal is typi-
cally embedded in coloured noise, which can be well modelled as
an autoregressive (AR) process. Without loss of generality, the pre-
whitened data model may be written as

zm(t) = ρ
d�

k=1

C̄κke
−ηk(t+mμ)e−βk|t−tsp|+iωk(T )t+em(t), (1)

where t = t0, . . . , tN−1 is the echo sampling time. Furthermore,
m = 0, . . . , M − 1 is the echo number; tsp is the echo peak offset;
the echo spacing μ = 2tsp; ρ is the common scaling due to the signal
power; κk, βk and ηk denote the normalised (complex) amplitude,
the sinusoidal damping constant and echo train damping constant of
the kth NQR frequency, respectively. Often, information about each
κk is available for a given substance and experimental set-up. The
sinusoidal and echo damping constants, βk and ηk, are here mod-
elled as unknown parameters. Furthermore, ωk(T ) is the frequency
shifting function of the kth NQR frequency component which, in
general, depends on the unknown temperature, T , of the examined
sample. An important point to note is that the number of sinusoidal
components, d, as well as the frequency shifting function for each
spectral line, ωk(T ), may be assumed to be known. For many sub-
stances, such as TNT, the frequency shifting function(s), over the
temperatures of interest, can be well modelled as linear functions,
i.e., [4]

ωk(T ) = ak − bkT, (2)
where ak and bk, for k = 1, . . . , d, are given constants. The com-
plex scaling, due to the prewhitening operation, may be written as
C̄ = C(λk) for �t − tsp� < 0, otherwise C̄ = C(λ̃k), where
�x� denotes the integer part of x, λk = eiωk(T )+βk−ηk and λ̃k =

eiωk(T )−βk−ηk . Furthermore, C(λ) denotes the AR prewhitening
lter (see [8] for further details). Finally, em(t) is an additive white
noise.
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3. THE FRETAML DETECTOR

Using (1), themth prewhitened echo may be written as

z
m
N �

�
zm(t0) . . . zm(tN−1)

�T
= ρAθ̄Bmκ + e

m
N , (3)

where e
m
N is de ned similar to z

m
N , and

Aθ̄ =

�
����������

C(λ1)S1,t0 · · · C(λd)Sd,t0
...

. . .
...

C(λ1)S1,t̃sp
· · · C(λd)Sd,t̃sp

C(λ̃1)S1,t̃sp+1 · · · C(λ̃d)Sd,t̃sp+1

...
. . .

...
C(λ̃1)S1,tN−1 · · · C(λ̃d)Sd,tN−1

�
����������

Bm = diag{e−η1m, . . . , e−ηdm}
κ = [κ1 · · · κd]

T ,

where t̃sp is the closest data point such that t̃sp ≤ tsp. Further-
more, Sk,t = e[iωk(T )−ηk]te−βk|t−tsp|, the upper block of Aθ̄ is
(�tsp − t0�)× d and the lower block is (N − �tsp − t0�)× d, and
θ̄ = [T βT ηT ]T , where β and η denote the vectors of unknown
sinusoidal and echo dampings, respectively. As the temperature of
the sample can be assumed to lie in a known temperature range, we
may, using (2), determine the range of frequencies each sinusoidal
component may be present in. Hence, a frequency selective detec-
tor that only considers these narrow frequency bands can be derived.
Consider selecting the frequency regions formed by

	
2πk1
N

,
2πk2
N

, . . . ,
2πkL

N



, (4)

with k1, . . . , kL being L given, not necessarily consecutive, integers
selected such that (4) only consists of the possible frequency grid
points for each of the d signal components. For the mth echo, the
Fourier transformed (prewhitened) data vector, consisting only of the
frequency regions in (4), can be expressed as

Z
m
L �

�
Zm
k1 · · · Zm

kL

�T
= ρV∗

LAθ̄Bmκ + E
m
L , (5)

where

VL = [vk1 · · · vkL
] ; vkj

=

�
1 ei2π

kj
N · · · ei2π

kj(N−1)

N

�T
. (6)

Finally, Em
L , de ned similarly to Z

m
L , is the transformed noise se-

quence associated with the mth echo. Using (5), the (frequency
selected) transformed data model for the whole echo train can be
expressed as

ZLM �


(Z0

L)
T · · · (ZM−1L )T

�T
= ρ H̃θ̄κ + ELM , (7)

where ELM is de ned similar to ZLM , and

H̃θ̄ =

�
��

V
∗
LAθ̄B0

...
V
∗
LAθ̄BM−1

�
�� . (8)

The (approximate) maximum likelihood estimate of θ = [ρ, κ, θ̄]
can be found as

θ̂ = argmin
θ

�� ZLM − ρH̃θ̄κ
��2
2
, (9)

where ‖ · ‖2 denotes the two-norm. We note that from a compu-
tational point of view, it is possible to exploit the fact that the in-
dices of V

∗
LAθ̄Bm form geometric series (see [10] for more de-

tails). Assuming known θ̄, an initial estimate of ρ can be obtained
as ρ̂ = maxk{|(H̃θ̄)

†
ZLM |}, where X

† � (X∗X)−1X∗ is the
Moore-Penrose pseudoinverse. To allow for uncertainties in the as-
sumed amplitude vector κ̄, we assume that both κ̄ and the true am-
plitude vector, κ, will belong to an uncertainty hypersphere with
radius

√
ε (compare with [11]). An estimate of κ can then be found

by solving the following constrained minimisation

min
κ

���ρ̂H̃θ̄κ − ZLM

���2
2
subject to

���κ − κ̄

���2
2
≤ ε. (10)

This optimisation can be solved via the singular value decomposition
(SVD). Firstly, the SVD of H̃θ̄ is computed as

H̃θ̄ = UΣV
∗, (11)

where U ∈ CLM×r , Σ ∈ Rr×r and V ∈ Cd×r , with r =
rank(H̃θ̄). We note that H̃θ̄ has full column rank, therefore r = d.
Furthermore,Σ = diag{σ1, . . . , σd}, where σj denotes the jth sin-
gular value, and U and V are unitary matrices. Using the SVD of
H̃θ̄ , (10) can be written as

minκ̃

���ρ̂Σκ̃ − Z̃

���2
2
subject to

���V[κ̃ − ˜̄κ]
���2
2
≤ ε

⇔
minκ̃

�d

j=1

���ρ̂σj κ̃j − Z̃j

���2 subject to �d

j=1

���κ̃j − ˜̄κj

���2 ≤ ε,

(12)

where Z̃ = U
∗
ZLM , κ̃ = V

∗κ and ˜̄κ = V
∗κ̄. Furthermore, κ̃j ,

Z̃j and ˜̄κj denote the jth components of κ̃, Z̃ and ˜̄κ, respectively. It
is clear that

κ̃j � Z̃j/(ρ̂σj) (13)
is a minimiser of the objective function. If it also satis es the con-
straint equation (i.e., if the vector is feasible), then we have a solu-
tion to (12). However, if the vector does not satisfy the constraint,
the solution will lay on the boundary of the feasible set [12]. For this
case, (12) can be solved using the method of Lagrange multipliers.
De ning

L(λ, κ̃) =
���ρ̂Σκ̃ − Z̃

���2
2
+ λ

����V[κ̃ − ˜̄κ]
���2
2
− ε

�
, (14)

where λ is the Lagrange multiplier, the equations ∂L(λ, κ̃)/∂κ̃∗j =
0, j = 1, . . . , d, lead to the linear system

�
|ρ̂|2Σ∗Σ + λI

�
κ̃ = ρ̂∗Σ∗Z̃ + λ˜̄κ. (15)

As (|ρ̂|2Σ∗Σ + λI) is guaranteed to be nonsingular, the solution is
given by

κ̃j(λ) =
ρ̂∗σ∗j Z̃j + λ˜̄κj

|ρ̂σj |2 + λ
. (16)

To nd the value of the Lagrange multiplier, we de ne

φ(λ) =
���V[κ̃ − ˜̄κ]

���2
2
=

d�
j=1

�����
ρ̂∗σ∗j Z̃j − |ρ̂σj |2 ˜̄κj

|ρ̂σj |2 + λ

�����
2

, (17)

noting that it is a monotonically decreasing function of λ, and that
φ(0) > ε. These observations imply that there is a unique λ̂ such
that φ(λ̂) = ε. The root can easily be found using any standard root-
nding technique, e.g., Newton’s method. The required solution to
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Fig. 1. Plots illustrating the probability of detection, pd, as a function
of uncertainty, ν, using simulated data.

the original constrained minimisation (10) is then given as

κ̂ = Vκ̃, (18)

where κ̂ is the robust estimate of κ. Given κ̂, we may re-estimate ρ

as ˆ̂ρ = (H̃θ̄ κ̂)†ZLM . Substituting these estimates into the norm in
(9) yields the residual least squares error

�
� ZLM − ˆ̂ρH̃θ̄ κ̂

�
�2
2
= Z

∗
LMZLM − Z

∗
LMΠ

H̃
θ̄

κ̂
ZLM , (19)

where Π
H̃

θ̄
κ̂
= (H̃θ̄ κ̂)(H̃θ̄ κ̂)†. Thus, for each θ̄, a new estimate

of κ is obtained, and as a result, a new value of Z∗LMΠ
H̃

θ̄
κ̂
ZLM .

The θ̄ associated with the maximum value ofZ∗LMΠ
H̃

θ̄
κ̂
ZLM yields

the estimate of θ̄. Given the estimate of θ̄, we proceed to form the
test statistic, T (ZLM ), as the (approximative) generalized likelihood
ratio test for a signal with unknown noise variance, i.e.,

T (ZLM ) = (2LM − 1)
Z
∗
LMΠ

H̃
θ̄

κ̂
ZLM

Z∗LM (I−Π
H̃

θ̄
κ̂
)ZLM

. (20)

Using (20), the signal component is deemed present if and only if
T (ZLM ) > γ, and otherwise not, where γ, computed from the
noise-only data, is a predetermined threshold value re ecting the ac-
ceptable probability of false alarm (pf ). As noted in [6], several sim-
pli cations can be made to this detector by using different strategies
to evaluate the (2d+1)–dimensional search. It was noted in [8], that
approximating the sinusoidal damping parameters to be the same
does not alter detector performance signi cantly. Therefore, let-
ting βk ≈ β0 reduces the search dimension to (d + 2) over the
unknown echo damping parameters, temperature and the common
sinusoidal damping parameter. Furthermore, as noted in [6, 8, 9],
this full (d+2)–dimensional search may be well approximated using
(d+2) 1–dimensional searches, which may be iterated to further im-
prove the tting. We denote the resulting detector the frequency se-
lective robust echo train approximative maximum likelihood (FRE-
TAML) detector.
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Fig. 2. The ROC curves comparing detectors using measured data.

4. THE SIZE OF THE UNCERTAINTY REGION

From the above discussion, it is clear that the choice of the radius
of the uncertainty hypersphere,

√
ε, will signi cantly affect the es-

timate of κ. We will now consider this issue in further detail. One
approach is to use laboratory measurements to examine various per-
formance measures, e.g., the receiver operator characteristic (ROC),
for different values of ε, using these measures to determine a suitable
value for ε. However, we can also get an idea of the value of ε from
the constraint equation in (10) and by making assumptions about the
uncertainties in the complex amplitudes. Firstly, we rewrite κk as

κk = (|κ̄k|+Δm
k )ei(∠κ̄k+Δ

p
k
), (21)

where |κ̄k| and ∠κ̄k denote the assumed magnitude and phase com-
ponents of the kth complex amplitude, respectively; Δm

k and Δp
k

denote the errors in the kth magnitude and phase components, re-
spectively. The magnitude errors, Δm

k , are here assumed to be in-
dependent truncated Gaussian random variables whose distributions
are each given by the conditional probability density function (PDF),

f
�
Δm
k

�
�Δm

k > −|κ̄k|
�
=

f(Δm
k )

1− F (−|κ̄k|) , (22)

where the PDF, f(x), is a zero mean Gaussian density, with vari-
ance σ2

m, and F (x) is its corresponding distribution function. The
phase errors, Δp

k, are here assumed to be independent identically
distributed random variables, uniformly distributed over the interval
[−P, P ], where 0 ≤ P ≤ π is selected according to the uncertainty
in the phases. The PDF ofΔp

k is thus given as

f(Δp
k) =

�
1
2P

−P < Δp
k ≤ P

0 Otherwise. (23)

A reasonable way to form ε can then be

ε =
��κ − κ̄

��2
2
=

d�
k=1

���κk − κ̄k

���2, (24)
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with κ de ned as in (21). As noted in [10], a good choice of ε is the
mean of (24), which can be evaluated via Monte-Carlo simulations.
For simplicity, we de ne the uncertainty parameter, ν, which couples
both the uncertainties in the phases and the magnitudes. For a given
value of ν, we set P = π ν

100
and σ2

m = 0.0001ν.

5. NUMERICAL EXAMPLES

In this section, we examine the performance of the proposed detec-
tor using both simulated and measured NQR data. The real data
consisted of 1000 data les, 500 with TNT present and 500 without,
each le taking around one minute to acquire. Each le consisted
of four echo trains summed up and phase cycled, to reduce baseline
offset. The echo trains were made up ofM = 26 echoes, each con-
sisting of N = 256 samples. The sample, which consisted of 180g
creamed monoclinic TNT, was placed inside a shielded solenoidal
coil. The temperature of the sample was not arti cially controlled,
but can be assumed to be around 297 K (see [10] for further exper-
imental details). Table 1 summarises the NQR signal parameters,
estimated from the signal as obtained by summing all the 2000 TNT
echo trains. Furthermore, the experimental settings were such that
the noise could be assumed white. The temperature shifting func-
tions for the d = 4 lines of monoclinic TNT are a1 = 893.502,
a2 = 875.734, a3 = 892.503, a4 = 870.293 (all ak in kHz),
b1 = 0.1529, b2 = 0.1070, b3 = 0.1685 and b4 = 0.1125 (all bk
in kHzK−1) [8]. The detectors were also compared using simulated
data, which was generated using (1), (2) together with the temper-
ature shifting functions, and the values in Table 1. For the simu-
lated data, the number of Monte-Carlo simulations was 1500 and the
SNR was -28 dB, where SNR is de ned as SNR = σ−2e σ2

s , with
σ2
e and σ2

s denoting the power of the noise and the noise-free signal,
respectively. In the following analysis, we compare the proposed
FRETAML algorithm to the ETAML and FETAML algorithms, pre-
sented in [6], together with the FLSETAML detector which esti-
mates κ using (13) and (18). The detectors used the following search
regions (see, e.g., [6] for further explanations on how to choose the
search regions); the search region over temperature was selected as
T = [292, 302] K (in 100 steps), the common sinusoidal damp-
ing parameter and the echo train damping parameters used β0 =
[0.001, 0.1] and ηk = [0.0002, 0.0004] (both in 100 steps), respec-
tively. Figure 1 illustrates the probability of detection (pd) as a func-
tion of the uncertainty level, ν, using simulated data, for probability
of false alarm (pf ) of 1%. For each uncertainty level, ε was chosen
as the mean of (24), calculated using 107 Monte-Carlo simulations.
The estimated mean values for ν = 10, 20, 30, 40, 50, 60, 70, 80, 90
and 100% are 0.0826, 0.3180, 0.6925, 1.1846, 1.7661, 2.4046, 3.0653,
3.7124, 4.3162, and 4.8452, respectively. The gure shows that the
proposed robust detector outperforms the other detectors for all un-
certainty levels; this as the robust detector is able to incorporate prior
knowledge, whilst also allowing for uncertainties in it. We proceed
to examine the ROC curves for the different detectors, using the real
data. We note that the data was measured under laboratory condi-
tions where only the temperature was allowed to vary. Therefore,
the error between κ̄ and κ can be expected to be low. Figure 2 il-
lustrates the ROC curves, where κ̄ is constructed from estimates of
the complex amplitudes, summarised in Table 1, with ε = 0.5. The
gure illustrates that there is a gain for the proposed robust detector,
even for the case when the uncertainty in κ̄ is very low.1

1The authors are grateful to Professor John A. S. Smith and Mr. Richard
Silversides, from King’s College, London, for useful suggestions.

Table 1. Estimates of NQR signal parameters for the d = 4
NQR components of monoclinic TNT, for an excitation frequency
of 841.5 kHz, in the region of 830-860 kHz

k 1 2 3 4
βk 0.0048 0.0049 0.0046 0.0038

ηk × 10−3 0.2126 0.2096 0.2237 0.2576
|κk| 0.39 0.88 1 0.69

∠κk (rads) -0.7546 -2.9428 -0.7541 -1.0870
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