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ABSTRACT
This paper presents eigenvector algorithms (EVAs) for blind
deconvolution of multiple-input multiple-output in nite im-
pulse response (MIMO-IIR) channels (convolutive mixtures).
One of the attractive features of the proposed EVA is that it
is insensitive to Gaussian noises which are added to the out-
puts of the channels; hence the proposed EVA is referred to as
a ”robust” eigenvector algorithm (REVA). Simulation results
show the validity of the REVA.

Index Terms— Eigenvector algorithms, Robust eigenvec-
tor algorithms, Blind deconvolution, MIMO-IIR channels,
Gaussian noise

1. INTRODUCTION
In this paper, we deal with a blind deconvolution (BD) prob-
lem for multiple-input and multiple-output (MIMO) in nite-
impulse response (IIR) channels. To solve this problem, we
use eigenvector algorithms (EVAs) [4, 7]. The rst proposal
of the EVA was done by Jelonnek et al. [4]. They have pro-
posed the EVA for solving blind equalization (BE) problems
of single-input single-output (SISO) channels or single-input
multiple-output (SIMO) channels. In [7], several procedures
for the blind source separation (BSS) of instantaneous mix-
tures, using the generalized eigenvalue decomposition, have
been introduced. Recently, the authors have proposed an EVA
which can solve BSS problems in the case of MIMO static
systems (instantaneous mixtures) [5, 6].

In this paper, based on the idea in [5, 6], we shall show
that EVAs can be used to solve the BD problem of MIMO-IIR
channels. Moreover, it will be shown that the proposed EVA
has such an attractive feature that the BD can be achieved
with as little in uence of Gaussian noise as possible; hence
this type of EVA is referred to as a ”robust” EVA (REVA).
Compute simulations are presented to demonstrate the valid-
ity of the REVA.

The present paper uses the following notation: Let
�

de-
note the set of all integers. Let � denote the set of all complex
numbers. Let � � denote the set of all � -column vectors with
complex components. Let � 	 
 � denote the set of all � � �
matrices with complex components. The superscripts 
 , � ,

�
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Fig. 1. The composite system of an unknown system and a
deconvolver, and a reference system.

and � denote, respectively, the transpose, the complex con-
jugate, and the complex conjugate transpose (Hermitian) of a
matrix. The symbols block-diag � � � � � and diag � � � � � denote
respectively a block diagonal and a diagonal matrices with the
block diagonal and the diagonal elements � � � � � . The symbol
cum � � � , � � , � � , � � � denotes a fourth-order cumulant of � � ’s.
Let � = � � � stands for � � � �  � � � � � � .

2. PROBLEM FORMULATION AND ASSUMPTIONS
We consider an MIMO channel with � inputs and � outputs
as described by

! " # $ � % & ' ( )
&

* + ' , - " # . / $ 0 1 " # $ � # 2 � � (1)

where
- " # $ is an � -column vector of input (or source) signals,! " # $ is an � -column vector of channel outputs, 1 " # $ is an � -

column vector of Gaussian noises, and � * + ' , � is an � � �
impulse response matrix sequence. The transfer function of
the channel is de ned by

* " 3 $ = % & ' ( )
&

* + ' , 3 ' � 3 2 � .
To recover the source signals, we process the output sig-

nals by an � � � deconvolver (or equalizer) 4 " 3 $ described
by 5 " # $ � % & ' ( )

&
4 + ' , ! " # . / $

� % & ' ( )
&

6 + ' , - " # . / $ 0 % & ' ( )
&

4 + ' , 1 " # . / $ � (2)

where � 6 + ' , � is the impulse response matrix sequence of6 " 3 $ := 4 " 3 $ * " 3 $ , which is de ned by
6 " 3 $ = % & ' ( )

&6 + ' , 3 ' � 3 2 � . The cascade connection of the unknown sys-
tem and the deconvolver is illustrated in Fig. 1.

Here, we put the following assumptions on the channel,
the source signals, the deconvolver, and the noises.
A1) The transfer function

* " 3 $ is stable and has full column
rank on the unit circle 7 3 7 = 1, where the assumption A1) im-
plies that the unknown system has less inputs than outputs,
i.e., � 8 � , and there exists a left stable inverse of the un-
known system.
A2) The input sequence � - " # $ � is a complex, zero-mean and
non-Gaussian random vector process with element processes
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� � � � � � � , � = � 	 
 being mutually independent. Each element
process � � � � � � � is an i.i.d. process with a variance � �� � �� �
and a nonzero fourth-order cumulant � � �� � de ned as

� � � cum � � � � � � 	 � � � � � 	 � �� � � � 	 � �� � � � � �� � 	 (3)

A3) The deconvolver 
 � � � is an FIR channel of suf cient
length 
 so that the truncation effect can be ignored.
A4) The noise sequence � � � � � � is a zero-mean, Gaussian vec-
tor stationary process whose component processes � 
 � � � � � ,� � � 	 � have nonzero variances � �

� 
 ,
� � � 	 � .

A5) The two vector sequences � � � � � � and � � � � � � are mutu-
ally statistically independent.

Under A3), the impulse responses
� � � �

for � � �
of the

cascade system are given by
� � � � � � � � �� � � � 
 � � � � � � � � � 	 � � � 	 (4)

where the length 
 := 
 � � 
 �  � is taken to be suf ciently
large. In a vector form, (4) can be written as�� � �

�� �� � 	 � � � 	 
 	 (5)
where

�� � is the column vector consisting of the � th output im-
pulse response of the cascade system de ned by

�� � := � � �� � 	 � �� � 	
! ! ! 	 � �� �

� � ,
� � � � � � ! ! ! 	 � � � � � � � 	 � � � � � � 	 � � � � � � 	 ! ! ! � � 	 � � � 	 
 (6)

where � � � � � � is the ( � 	 �
)th element of matrix

� � � �
, and

�� � is
the � 
 -column vector consisting of the tap coef cients (cor-
responding to the � th output) of the deconvolver de ned by�� � := � � �� � 	 � �� � 	 ! ! ! 	 � �� "

� � � # " � ,� � � � � � � � � � 
 � � 	 � � � � 
 �  � � 	 ! ! ! 	 � � � � 
 � � � � � # � 	 (7)

� � � 	 � , where � � � � � � is the ( � 	 �
)th element of matrix


 � � �
, and

��
is the 
 $ � block matrix whose � � 	 � � th block

element
� � � is the matrix (of 
 columns and possibly in nite

number of rows) with the � � 	 � � th element [
� � � � �  

de ned by
[

� � � � �  
:= ! � � � � � � � , � � � 	 " � 	 " % 	 ! ! ! , � = 
 � 	 
 � , where! � � � � � is the ( � 	 �

)th element of the matrix
� � � �

.
In the multichannel blind deconvolution problem, we want

to adjust
�� � ’s (i = � 	 
 ) so that

� �� � 	 ! ! ! 	 ��
�

� �
�� � �� � 	 ! ! ! 	 ��

�
� � � �# � 	 ! ! ! 	

�#
�

� $ 	 (8)

where
$

is an 
 $ 
 permutation matrix, and
�# � is the 
 -block

column vector de ned by�# � � � � # �� � 	 # �� � 	 	 	 	 	 # �� �
� � 	 � � � 	 
 (9)# � � � � % &# � 	 if � � � 	� ! ! ! 	 � 	 � 	 � 	 ! ! ! � � 	 otherwise 	 (10)

Here, &# � is the column vector (of in nite elements) whose � th
element '( � � � � is given by '( � � � � = ) � ( � � � � � � , where

( � � � is the
Kronecker delta function, ) � is a complex number standing for
a scale change and a phase shift, and � � is an integer standing
for a time shift.

3. EIGENVECTOR ALGORITHMS (REVAS)
3.1. Robust Eigenvector algorithm

In order to solve the BD problem, the following cross-cumulant
between � � � � � and a reference signal & � � � (see Fig. 1) is de-

ned; * + , � - . / � � � � � � 	 � �� � � � 	 & � � � 	 & � � � � � 	 (11)

where � � � � � is the � th element of ' � � � in (2) and the reference
signal & � � � is given by 0 � � � � ( � � � , using an appropriate l-
ter 0 � � � . The lter 0 � � � is called a reference system. Let1 � � � :=

� � � � � 0 � � � = [ 2 � � � � , 2 � � � � , ! ! ! , 2 �
� � � ] � , then & � � � =0 � � � � � � � � � � � � = 1 � � � � � � � � . The element 2 � � � � of the lter1 � � � is de ned as 2 � � � � � � ) � � �

)
2 � � � � � �

and the refer-
ence system 0 � � � is an � -column vector whose elements are3 � � � � = � � �� � � �

3 � � � � � �
,

� � � 	 � .
Researches using the idea of reference signals to solve the

blind signal processing (BSP) problem, to our best knowl-
edge, have been made by Adib et al. (e.g., [1]), Rhioui [8], and
Jelonnek et al. (e.g., [4]). Adib et al. have shown that the BSS
for instantaneous mixtures can be achieved by maximizing

* * + , * in (11) under the constraint � �+ � = � �� 4 � , but they have not
proposed any algorithm for achieving this idea, where � �+ � and� �� 4 � denote the variances of the output � � � � � and a source sig-
nal � 5 � � � � , respectively, and 6 � is one of integers � � 	 % 	 ! ! ! 	 
 �
such that the set � 6 � , 6 � , ! ! ! , 6 � � is a permutation of the set � 1,
2, ! ! ! , 
 � . Rhioui et al. have proposed quadratic MIMO con-
trast functions for the BSS with convolutive mixtures. In their
method, the number of reference signals corresponds to the
number of source signals which can be extracted. Moreover,
they claimed that as the reference signal, it is a practical valid
choice to choose a signal obtained by whitening the outputs
of the MIMO convolved system. Jelonnek et al. have shown
in the single-input case that by the Lagrangian method, the
maximization of * * + , * under � �+ � = � �� 4 � leads to a closed-
form expressed as a generalized eigenvector problem, which
is referred to as an eigenvector algorithm (EVA). The EVA
can solve the BE problems for SISO or SIMO channels.

In this paper, under the assumption that any reference sys-
tem 0 � � � is used, we want to show how the EVA works for
the BD of the MIMO-IIR channel (1). Moreover, it is shown
that the proposed EVA has such a property that it works as
little sensitive to Gaussian noises as possible.

To this end, we introduce fourth-order cumulants matrices
of � -vector random process � ( � � � � [9], which constitute a set
of � $ � block matrices 7 � + �( 8 � 8 � whose elements are de ned
by 9 7 � + �( 8 � 8 � : ; < 8 = > ? � ? �� cum � @ = � � - 
 � - � �  � � 	 @ �< � � - 
 � - � �  � � 	 @ � � � - � � 	 @ �� � � - � � � 	A 	 B 	 � � � 	 � 	 � � 	 � � � � 	 
 	 � � 
 � 	 
 � 	 (12)

where � ! � ; < 8 = > ? � ? � denotes the ( � � 	 � � )th element of the (A 	 B )th
block matrix of the matrix 7 � + �( 8 � 8 � . Then, we consider an � $
� block matrix

�7 expressed by
�7 = � "� � � � � �� � � � 7 � + �( 8 � 8 � . It

III ­ 730



is shown by a simple calculation that
�� becomes�� �

�� � �� �� � (13)
where

��
is the diagonal matrix de ned by�� � � block-diag � � � � � � � � � � � �

� 	 � (14)� 
 � � diag � � � � � � 
 �� 
 � - � 
 � � 
 �� 
 � � 
 � � 
 �� 
 � � 
 � � � � 	 � � � � � � � (15)
�� 
 � � 
 � � � �� � � � � 	
 � � � � � � 
 � � � 
 
 � � � � � � � � � � � � � (16)

It should be noted from the assumption A1) that all �� 
 � � 
 are
positive, if � � � � � and � � � � .

Here, as a constraint, we take the following value;
� � � � � � � � �� � � � � 	
 � � � � � � � � 
 � � 
 � � �
 � � 
 � � � � � - 
 
 � � �� � � - 
 
 	 �

� � � �
 �� � 
 � � � � �� � � � � � � � � �
�

�� � � � 
 � � 
 � � � 
 � � � � (17)

Then, we consider of solving the problem that the fourth-
order cumulant � � � � � , which can be decomposed as

� � �
=�� �


�� �� 
 , is maximized under the condition, that is, � � � � � =
� � � � �� � � � � 
 � . It should be noted that we may choose an appro-
priate positive value for �� � � � � 
 , if its true value is not avail-
able. By the Lagrangian method, the following generalized
eigenvector problem is derived from the above problem;�� �� 
 � � 


�� �� 
 � (18)

where
��

is the � � � block matrix whose ( � � �
)th block ele-

ment
� 
 � is the matrix with the ( 
 � � )th element [

� 
 � ]

 �

calcu-
lated by cum � � �
 � � � � � � 
 � � 
 � � � � � � � � � � � � 
 �  � � � 
 �  � � 
 	
( 
 � � = � � � ).

From the following theorem, one can see that by solv-
ing the eigenvector problem of the matrix

�� � � ��
, its solution

provides the vectors
�� 
 ( � = � � � ) satisfying (8). In the follow-

ing theorem, we con ne ourselves to the case � = � for the
simplicity of discussion, although our results are expandable
to the case � � � . Let the eigenvalues of the diagonal matrix�� � � �	

be denoted by
 
 � � 
 � � � � 
 � � 
 � � � �� 
 � � 
 � � = � � � � � � � � (19)
Theorem 1 Assume � � = � � and � � � � , and suppose
the following conditions holds true:
T1) All the eigenvalues 
 
 � � 
 ’s are distinct for � = � � � and� � �

.
Then the � eigenvectors corresponding to � nonzero eigen-
values 
 
 � � 
 
 ’s of

�� � � ��
become the vectors

�� 
 , � = � � � ,
satisfying (8).

The proof of Theorem 1 is omitted for the page limit.
Remark 1 Since the matrix

�� � � ��
consists of only fourth-

order cumulants, the eigenvectors derived from the matrix
can be obtained with as little in uence of Gaussian noise as
possible, which is referred as a robust eigenvector algorithm
(REVA).
Remark 2 The proposed EVA is closely related to the joint
diagonalization of square matrices (e.g., [2]).
Remark 3 It can be easily proved from Theorem 1that if the
assumptionT1) holds true, among all eigenvectors of

�� � � ��
,

there exist the eigenvectors that can extract the same source
signal from the output ! � � 
 . Therefore, in the next subsection,
we shall show how to choose the eigenvectors corresponding
to

�� 
 , � = � � � , satisfying (8) from all eigenvectors of
�� � � ��

.

3.2. How to choose the eigenvectors
In the previous subsection, in order to obtain the deconvolver�� 
 in (8), it was shown that the eigenvectors of

�� � � ��
were

calculated. In this subsection, in order to show how to choose
such eigenvectors that the solutions (8) can be obtained, we
consider the following eigenvector problem;

�� �� � �
 

� 
 � !� 
  
� 
 � (20)

where the structure of  
� 
 is the same as the one of

�� 
 , but the
elements of  

� 
 are different from the ones of
�� 
 . The eigen-

values !� 
 ’s of
�� �� � � correspond to � 
 ’s of

�� � � ��
, because

the eigenvectors obtained from (20) are the left eigenvectors
of

�� � � ��
, corresponding to � 
 ’s. Moreover, the conjugately

transposed vectors of the eigenvectors obtained from (20) cor-
respond (or are equal) to the row vectors of

��
in (5) up to

constants. The proof of the mentioned above is as follows:
The matrix

��
in (18) can be decomposed as�� �

�� � �	 �� � (21)

where
�	

is the block diagonal matrix de ned by�	 � � block-diag � 	 � � 	 � � � � � � 	
� 	 � (22)	 
 � � diag � � � � � � � 
 � � � 
 � � � � � � � 
 � � 
 � � � 
 � � � 
 � � 
 � � � 
 � � � � 	 �(23)

� � � � � . Substituting (13) and (21) into (20), we obtain�� � �	 �� � �� � �� �� 
 � �
 

� 
 � !� 
  
� 
 � (24)

It can be easily shown that
��

is nonsingular when � � � � �
and � � � � . Then (24) becomes�� � �	 �� � � �� � �

 
� 
 � !� 
  

� 
 � (25)
Multiplying (25) by

�� � � from the left side, (25) becomes�	 �� � � �� � �
 

� 
 � !� 

�� � �

 
� 
 � (26)

Let  
" 
 :=

�� � �  
� 
 , then (26) becomes

�	 �� � �
 

" 
 = !� 
  
" 
 . This

means that since
�	 �� � � is a diagonal matrix, the elements

of  
" 
 are zero except for one element. Namely, since all el-

ements of
�	 �� � � are distinct, it can be seen that the conju-

gately transposed vector of  
� 
 becomes a row vector of

��

up to a constant. The proof is completed.
It can be seen from the de nition of the block element� 
 � (see it stated below (7)) that

� 
 � is a matrix (of � columns
and possibly in nite number of rows) having a special Toeplitz
(or constant-along-diagonals) structure. Therefore, the (cross)
correlation of a pair of rows of

� 
 � (by shifting their elements
left or right appropriately) is the same for all pairs of rows of� 
 � if � is in nite. In practice, however, the length � of the
equalizer and the length � of the channel are nite, and so� 
 � is a matrix of � columns and � � � � � rows, that is,� 
 � � " # � 
 � � � $ % � . In this case pairs of rows of

� 
 � have
approximately the similar correlations for all pairs of rows
of

� 
 � if � is suf ciently large. Base on the above discus-
sions, we can classify approximately � � eigenvectors

�� 
 ’s in
(18) into � sets of � eigenvectors whose pairs have almost
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the same correlations for all pairs of eigenvectors of each set.
Thus we propose a tentative procedure of nding � appropri-
ate eigenvectors satisfying (8) is as follows;
1) Set � = 1 (where � denotes the number of iterations from
the beginning less than � +1).
2) Select the eigenvector

�� of
�� � � ��

and the eigenvector �
�

of
�� �� � � corresponding to the maximum magnitude eigen-

value among � �� � � ’s.
3) Calculate the magnitude of the correlations of all pairs of

�
� and �

� � ’s.
4) Separate � eigenvalues �� ’s from the others such that their
magnitudes are larger than the remaining ( � � � ) � ones, and
save the ( � � � ) � remaining eigenvalues �� ’s for nding other
eigenvectors.
5) Put � = � + 1 and stock the

�� obtained in 2). If � = � + 1,
stop the iterations, otherwise, go to 2).

Therefore, the � eigenvectors
�� ’s stocked in step 5) are

the � solutions in (8)
4. COMPUTER SIMULATIONS

To demonstrate the validity of the proposed method, many
computer simulations were conducted. Some results are shown
in this section. The unknown system

� 	 
 � was set to be an
FIR channel with two inputs and two outputs, and assumed
that the length of channel was three ( � � � ), that is,

� 
 � �
’s

in (1) were set to be
� 	 
 � = � � � � � � 
 � � 
 �

=�
� � � � � � � � � 
 � � � � � 
 � � � � � � � � � � 
 � � � � � 
 �

� � � � � � � � � 
 � � � � � 
 � � � � � � � � � � 
 � � � � � 
 � � �
The Gaussian noises � 	 	 � � with its variance 
 �

� � were included
in the output � 	 	 � � at various SNR levels. The SNR was con-
sidered at the output of the system

� 	 
 � . The source sig-
nals 
 � 	 � � and 
 � 	 � � were a sub-Gaussian signal and a super-
Gaussian signal, where the sub-Gaussian signal takes one of
two values, � � and 1 with equal probability 1/2 and the super-
Gaussian signal takes � � , � , and 0 with probabilities 1/8,
1/8, and 6/8, respectively. As a measure of performances, we
used the � � � � � � � � � � 	 � � � � 	 � 
 � � 
 � � � � � 	 � � 	 � 	 � � 	 (M � 
 � )
[3]. The parameters � � and � � in � 	 
 � were set to be 0 and
9, respectively. The rst and the second components of the
reference system � 	 
 � were, respectively, set to be 
 � and 0.
that is, � 	 � � = � � 	 � � � � . For comparison, the EVA was used.

Fig. 2 shows the results of performances of the proposed
REVA and the EVA when the SNR levels were respectively
taken to be 5 [dB], 10 [dB], 15 [dB], 20 [dB], and 25 [dB],
where each M � 
 � shown in Fig. 2 was the average of the per-
formances obtained by 30 independent Monte Carlo runs. In
each Monte Carlo run, the nal eigenvectors of the EVA and
the REVA were obtained by ten iterative calculations, where
in each iteration,

�� and
��

were estimated by data samples
in the following three cases; (Case 1) 5,000 samples, (Case
2) 10,000 samples, and (Case 3) 20,000 samples. It can be
seen from Fig. 2 that when the SNR level is more than about
15 dB, the EVA is more useful than the REVA, because at
those SNR levels, the EVA can provide better performances

EVA (Case 3)
EVA (Case 2)
EVA (Case 1)

REVA (Case 3)
REVA (Case 2)
REVA (Case 1)-5

-10

-15

-205 10 15 20
SNR (dB)

0

25

Fig. 2. The performances of the REVA and the EVA with
varying SNR levels, in the cases of 5,000 samples (Case 1),
10,000 samples (Case 2), and 20,000 samples (Case 3).

than the REVA. On the other hand, the REVA is effective for
the case that the SNR level is less than about 15 dB, because
as the number of data samples increases, the REVA provides
better performances than the EVA.

5. CONCLUSIONS
We have proposed an EVA for solving the BD problem. The
EVA is robust against Gaussian noise, which means that the
EVA can be used to estimate the inverse of

��
with as little in-

uence of Gaussian noise as possible. Computer simulations
have demonstrated the effectiveness of the proposed EVA.
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