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ABSTRACT

The paper explores a novel framework for signal representation based
on dynamic information in a signal that is well suited for robust anal-
ysis of low SNR signals and extraction of time-varying features. The
method is derived from dynamical theory but formulated in a ba-
sic parameter estimation paradigm. Modeling the changes in data
provides a compact depiction of time-variant and invariant informa-
tion plus features related to data dynamics. The method also pro-
vides strong noise mitigation properties even when noise statistics
is poorly understood. The signal processing formulation supplies a
connection between the time-delay and the Fourier domains. This
connection helps us bridge non-linear dynamical and signal process-
ing theories and brings a powerful novel tool to signal analysis at
large. The experiment is presented using a speech sample from the
TIMIT database.

Index Terms— Signal processing, Time-varying systems, Volterra
series, Feature extraction, Speech processing

1. INTRODUCTION

Many excellent methods exist for analysis of stationary data con-
taminated by Gaussian noise. The situation is less satisfactory when
signals are time-variant, both transient and long-scale nonstationary.
Equally challenging can be analysis of signals degraded by high and
’non-standard’ (e.g. non-Gaussian and non-stationary) noise.

This paper introduces a domain for signal analysis where we ex-
ploit the signal derivative. This leads to a method that appears to be
well suited for the scenarios described above. The method also offers
very simple means for non-linear data analysis. The suggested do-
main is a low-order non-uniform time-delay embedding [1] to which
we map the derivative of the data vector. While the embedding con-
cept originated in the context of nonlinear dynamics, this theory is
exploited here in a signal processing context. Namely, the frame-
work is established which allows us to compute time-delay domain
features from noisy data via a basic parameter estimation paradigm.
Interest in non-linear methods has been limited in the signal process-
ing (SP) community because classical nonlinear techniques tend to
be computationally complex and are notoriously extremely sensitive
to even minute random data perturbations. In contrast, the proposed
method is highly robust and can be used without any reference to
nonlinear dynamics theory. One of the contributions of the paper
is establishing a connection between the Fourier (FD) and the pro-
posed domains. Another contribution is establishing a link between
nonlinear dynamics theory and the eld of signal processing.

It is important to realize that embedding theory does not imply
that data must be generated by a non-linear system. Rather it can

be applied to data generated by any deterministic system, linear or
nonlinear. The property that embedding theory provides which is ex-
ploited here is that we can represent highly dynamically complex but
deterministic signals in a recurrence relationship. This recurrence re-
lationship is guaranteed to exist, under fairly loose conditions, in a
space that is spanned by a suf ciently large number of vectors com-
posed of past observations of data.

Following pioneering contributions in [3], I de ne a signal model
in the time-delay domain as a projection of the derivative of a stochas-
tic observable into a nite order attractor, i.e. the manifold. The key
attribute here is the parameter estimation framework through which
the dimension and the embedding parameters, including the delays,
are found directly from the data. Modeling the data derivative rather
than the data vector itself gives rise to several non-trivial properties.
We nd a drastic reduction in the model orders that need to be used
to represent even highly complex signals. All the dynamic models,
including the simplest one containing a single delay term, describe
an in nite set of outputs of damped and undamped harmonic oscilla-
tions plus a limited set of overdamped oscillations. The models with
two delay terms can describe more complex signals, including those
with nonlinear features. Thus even very basic dynamical models,
with as few as two to four parameters, t many of the data classes
one typically expects to encounter in SP. The model universality pre-
cludes errors due to model misspeci cation for those classes of data.
Strong noise mitigation properties which are the result of projection
onto a low-order manifold further contribute to the method’s robust-
ness. Overall, we nd the method to be highly robust in the case of
very short data records and low SNR.

One interesting interpretation of the delay domain models is in
the context of timing sequences or spike trains underlying biologi-
cal cell signaling. In this interpretation, a single time-delay, whose
value adapts to the changes in data over time is analogous to an in-
terspike interval. Timing codes are widely believed to be responsible
for the admirable ef ciency with which biological systems can en-
code time-variant information. When we consider dynamical delay
models, a single delay can encode an in nite set of oscillatory func-
tions. Extensive investigations, both in-vivo and via modeling, have
attempted to uncover the underlying principle of the biological code.
However, the possibility that spike trains may encode the changes in
the signal has not been explored. Such encoding would be highly
ef cient for transmitting time-varying information and almost uni-
versal in its modeling property in the sense that it can represent a
large set of functions. The topic is not discussed further here, ex-
cept to note that the proposed domain and its estimation algorithm
have been termed correspondingly as the Interval Domain (ID) and
Interval Domain Estimation Algorithm (IDEA).
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2. INTERVAL DOMAIN DERIVATION

We consider a one-dimensional observation vector x(t) to be an out-
put of a l-dimensional system. We also de ne a D-dimensional
time-delay reconstructed state vector at time t (see [1]) as xt =
{x(t), x(t ≤ τ1), . . . , x(t ≤ τD−1)}, where τi, 1 ≤ i ≤ D ≤ 1
are delays. According to [1], under fairly generic conditions there
exists a map between the l-dimensional system and a D-dimensional
state vector (D > 2l + 1) that is a Ck, k < l diffeomorphism, also
called an embedding. It follows that we can express the derivative
of the data vector as a smooth function of the state vector. I show
in the next section that the choice to represent the derivative in the
time-delay domain signi cantly expands the informational content
that can be described by very simple models.

The form of the function into which the derivative would map
in the delay coordinates is unknown but it can always be de ned
in the general form as a functional expansion with unknown pa-
rameters which are constrained by the data. Volterra kernel func-
tions, which represent a hierarchy of interactions among the past
and present states of the system, provide a good modeling choice.
Speci cally, we can write

ẋ(t) = g0 +
∞P

τ=0

gτxτ +
∞P

τ1=0

∞P
τ2=0

gτ1,τ2
xτ1

xτ2
+ ≤≤≤+
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τ2=0

≤≤≤
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gτ1,τ2,...,τqxτ
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xτ

2
. . .xτq . . . ,

(1)
where bold face letters denote vectors and xτi

= xt−τi
is a state

vector at time t ≤ τi. Note that we can generally omit the term g0 if
we expect the signals to be bounded. The difference between Eq. (1)
and a standard model is, of course, in the use of the derivative ẋ(t).
Successful recovery of an embedding from generic data is governed
by considerations covered in [2]. Particularly relevant to us is that
the choice of the delay vectors is critical and that delays should be
allowed to be non-uniform. It follows that rather than taking the
classical approach of choosing delays and the model dimension ad
hoc, it is preferable to estimate the embedding parameters directly
from the derivative.

As already reviewed, a key advantage we gain over simply ex-
panding the data vector is in drastic reduction in the model order that
we can use. We nd that even the simplest linear one-delay models,
of which there are two,

ẋ = axτ (2)
ẋ = a0x + a1xτ , (3)

can be suf cient for many SP applications. These two models will
be studied in detail here. We refer to the rst model as the basic ID
model and to the second as the general linear one-delay ID model.

The extension of this method to data contaminated by random
noise is straightforward. In this case, exact estimate of a smooth
invertible function from the derivative is not possible. Instead, we
force the diffeomorphism through projection of the derivative into a
low-order ID model by estimating the model parameters to within
some error, the standard procedure in SP. The low-order models,
such as those in Eqs. (2) and (3) can be estimated using a num-
ber of methods for solving underdetermined problems, which range
from sparse optimization to global searches.

3. ANALYSIS OF THE ONE-DELAY ID MODELS

To understand properties of ID models, it is necessary to under-
stand the data classes tted by these models. Note that ID models

are equivalent to autonomous Delay Differential Equations (DDE).
Hence, the task here can be formulated as nding solution spaces
of the corresponding DDE. Here we study signal classes described
by the one-delay models in Eqs. (2) and (3). Through the process
I show how the time and frequency domain signal information (am-
plitude and frequency) are represented in these models.

Solving Delay Differential Equations analytically is notoriously
dif cult except for some restricted cases. The essential difference
in how individual solutions are de ned in ODE and DDE is in the
initial value problem. In ODE, the initial value problem is given by
a point. In a DDE, the initial value problem is de ned by a function.
Hence, unlike an ODE, a DDE posses an in nite solution space, a
fundamental property which explains how the simplest ID model can
accommodate the large span of data classes.

Pure sinusoid: Before considering the in nite solution space
of Eqs. (2) and (3), it will greatly bene t the discussion to exam-
ine how pure sinusoids are represented in the ID. Consider sinusoid
x(t) = A sin(ωt + τ ) with frequency f = w/2τ . This function
creates a one-dimensional limit cycle solution in the delay embed-
ding space. Therefore, we expect the simplest model that fully de-
scribes its derivative to be a single delay model Eq. (2). Substi-
tuting the sinusoid signal into Eq. (2) we get ω

a cos(ωt + τ ) =
sin(w(t ≤ τ) + τ ). There is only one possible choice for τ for
which this equality can hold:

τn =
(2n ≤ 1)τ

2ω
, n ∈ I+, (4)

with the corresponding coef cient a = ≤ω for odd n and a = ω
otherwise. As can be expected since the delay identi es recurrences
in the data, τn is inversely related to the frequency. The multiple val-
ues of τn in Eq. (4) are analogous to the harmonics in the frequency
domain. The smallest value τ = τ

2ω = 1
4f

, corresponds to a quar-
ter wavelength and is inversely proportional to the 4th harmonic. For
consistency, we refer to the delay which corresponds to one full cy-
cle as the fundamental delay τf = 1

f
. In the case of a pure tone, the

absolute value of the coef cient a is equal to the angular frequency.
It is de ned unambiguiously, unlike τ .

Note that since τ ∈ I+, only an approximation to the frequency
that is the closest to the inverse integer τ value can be found in prac-
tice. Thus the accuracy of the method is bounded by the sampling
rate and data upsampling is one way to obtain a ner τ resolution.
This highlights an important point regarding utility of this method.
IDEA is not a high precision algorithm that would make an au-
tomatic choice for analysis of pure stationary signals with low to
moderate SNR. Its contributions are in improved robustness in high
SNR and in ef cient representation of time-varying signals which is
shown next.

We now characterize the entire solution spaces of linear one-
delay DDE shown in Eqs. (2) and (3). The derivations are presented

rst and results are summarized at the end.
As discussed, the solution space of a DDE is de ned by the

boundary value problem where the initial condition must be de ned
as a function x(t) = u(t) on the t ∈ [≤τ, 0] interval, called the
pre-interval. Similar to ODEs the general nontrivial solutions to Eq.
(3) have the form x = Beτt , which yields the following nonlinear,
transcendental characteristic equation

τ ≤ a0 ≤ a1e−ττ = 0 . (5)

Characterizing roots τ p of this transcendental equation can be non-
trivial. Observing Eq. (5) for the different relationships between a0,
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a1, and τ , we can see even before obtaining a formal solution that it
admits an in nite number of complex roots. These roots give rise to
an in nite set of oscillatory solutions.

The analytic solution for the case a0 = 0 was given in [4]. Here
we use a different approach to solve Eqs. (2) and (3) based on the
concept of the Lambert function. The Lambert function, also known
as the Omega function or product log [5], is a multivalued function
W (z) de ned by the equation W (z)eW (z) = z, z ∈ C. Multipling
both sides of Eq. (5) by τea0τ , it is straightforward to show its roots
for the two models can be written respectively as

τ =
1

τ
W (≤aτ) (6)

τ =
1

τ
W (≤aτea0τ ) ≤ a0 . (7)

In both cases, the roots of Eq. (5) are the values of the Lambert
function scaled and shifted along the real axis (or simply scaled in
the case of Eq. (6)).

The Lambert function is multivalued with in nitely many branches
in the complex plane, conventionally labeled as W (z)k, k = 0,≤1,
etc. There are two cases where in addition to the in nitely many
complex branches, there exist either two real branches W0 : ≤1 ≤
W0 ≤ 0 and W−1 : W−1 ≤ ≤1 de ned on the interval [≤1/e ≤
z < 0) or one real branch W0 : W0 > 0 on the interval [0, inf). At
point z = ≤1/e both branches come together and, in effect, present
a single real solution W = ≤1.

The real versus complex W (z)k de ne fundamentally different
forms of solutions. Since superposition of any of the individual so-
lutions is also a solution, we can write the corresponding general
solutions for (2), (3) as

x(t) =
∞X

k=−∞

Bk e
1

τ
W (−a1τ)t (8)

x(t) =
∞X

k=−∞

Bke
1

τ
W (−a1τea0τ )tea0t . (9)

The scaling Bk is de ned by the preshape function, which incorpo-
rates information on the amplitude of the signal. The two solution
spaces in Eqs. (8) and (9) appear to be closely related. Both con-
tain an in nite set of oscillatory intrinsic modes e

1

τ
Wk(−)t de ned by

the complex Wk(≤) and which describe the characteristic spectrum
for the corresponding models. There are also three nonoscillatory
modes related to the real roots. The difference between the two so-
lution spaces is in the appearance of the second time-dependent ex-
ponential term in (9). The two exponential terms in Eq. (9), one
primarily oscillatory and the other always nonoscillatory, describe
distinctly different behaviors and have independent time scales. The
real ea0t can be interpreted as modeling amplitude variations. If
we consider the scenarios where estimation is done adaptively over
short time windows, this term can be used to model amplitude mod-
ulations. Moreover, under the condition |Ḃk/Bk| << fk, where
is fk denotes frequency, amplitude modulation and phase modula-
tion have similar presentation. Hence, the term could capture phase
modulation in some types of signals. This means phase modulations
can be identi ed even though constant phase information is lost in
an embedding.

To understand the speci c form of the oscillatory modes above
we consider complex roots τ k = rk+jwk. The oscillatory solutions
de ned by x = Beτt can be written simply as

x(t) =
∞X

k=−∞

erkt (B1k sin(wkt) + B2k cos(wkt)). (10)

Using substitutions Ck = (B2
1k+B2

2k)1/2, sin(vk) = B2k/Ck, cos(vk) =
B1k/Ck we rewrite the above as

x(t) =
∞X

k=−∞

Ckerkt (sin(wkt + vk)), (11)

where vk is an angular phase. We can see now that the data classes
represented by one-delay ID models include all damped (and grow-
ing) and undamped harmonic oscillations. In addition, as explained
above, model (3) also admits more complex waveforms, including
modulated harmonic oscillations.

We next derive the relationships between the ID parameters and
the time and frequency domain features of data. We consider an in-
dividual oscillatory component of the solution and drop the subscript
k for convenience. Substituting τ = r + jw into the characteristic
equation (5) we have τ = a0 + a1e

−rτ (cos(ωτ) ≤ i sin(ωτ)) and
separating the real and imaginary parts after some manipulation:

a0 = r + ω cot(ωτ)

a1 = ≤ ωerτ

sin(ωτ)
.

(12)

This system can be solved numerically to yield a family of oscil-
latory solutions for each choice of {a0, a1, τ}. A numerically more
convenient formulation of the same is

r = a0 ≤ ω cot(ωτ)

ln

„
≤a1

sin(ωτ)
ω

«
≤a0τ + ωτ cot(ωτ) = 0.

(13)

The later gives a transcendental equation purely for w that can be
solved numerically. Other types of expressions linking the features
of the individual domains may be useful. For example, we can derive
from Eq. (12)

τ =
1

w
tan−1 w

a0 ≤ r
, (14)

which gives a more explicit link between τ and the frequency and
decay/growth amplitude information of a damped/forced sinusoidal
oscillation ert cos(ωt).

We can easily derive similar results for the basic ID model by
setting a0 = 0 in the above equations. The general form of the equa-
tions in not altered in this case, so that the relationships between the
features of the two domains are similar although not identical. In
particular, when a0 = 0, Eq. (14) becomes τ = 1/w tan−1 ≤w/r.
From this we can evaluate how a one-dimensional limit cycle in the
embedding space is related to the two parameters of a harmonic os-
cillator. In particular, as the damping coef cient grows, r >> w,
this expression is dominated by the rst term of its Taylor series ex-
pansion τ = ≤1/r. As one can see, τ becomes primarily affected
by the damping coef cient. In the limit, we have w = 0 and the
roots are purely real. Solutions corresponding to the real roots can be
viewed as outputs of an overdamped (overforced) oscillator. Since
there can be up to two negative and one positive real τ , one-delay ID
models can describe at most two overdampled oscillator outputs or
one overforced oscillator output in any given data.

We can write the most general form of the solution then as

x(t) = B0 er0t + B1 er1t +

∞X
k=2

erkt (Ck sin(wkt + vk)), Ck �= 0

(15)
where one or both coef cients B0,1 assume non-zero values on the
interval de ned by ≤a1τea0τ < 1/e. Note the change in the limits
of the summation in Eq. 15 which does not affect the general result.
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The interval where real r0,1 exist can be partitioned further into
sections that contain respectively one or two negative real r0,1 < 0,
which de ne decaying exponentials, or one real r0 > 0 and the
other r1 ∈ C, which de nes a single growing exponential. These
subintervals can be easily found from the information given above
on behavior of the Lambert function.

The key property of one-delay ID models uncovered by the anal-
ysis is their compact representation of any combination of transient
and stationary harmonic oscillations. This property is summarized
in the following theorem.
Theorem 1 Any functionx(t) composed of any number of harmonic
oscillations (damped and undamped) may be expressed in the form
of linear one-delay ID models ẋ = axτ and ẋ = a0x + a1xτ .

Analysis of higher order linear and nonlinear DDE shows that
complexity of their solution spaces increases with an increase in the
degrees of freedom. However, all DDE share a core subspace of so-
lutions describing an in nite set of fundamental waveforms that are
combinations of outputs of general undamped, damped and forced
oscillators. The set of functions which can be t by these combi-
nations is quite large. Hence even the simplest ID models are quite
universal in being able to describe many types of data.

Such universality is one reason behind the method’s robustness.
Classical parameter estimation methods essentially depend on the
correct speci cation of the underlying model. Errors and approxi-
mations in models typically lead to inconsistent parameter estimates
and compromised results. Since ID models are exact for many sig-
nals we expect to see, we circumvent the errors due to model mis-
speci cation in many cases. The absence of such errors is one rea-
son for the observed robustness of DDE in modeling very short data.
This ability, in turn, extends applicability of IDEA to adaptive pro-
cessing over short frames of nonstationary data.

In comparison with FD, the Interval Domain extends consider-
ably the classes of signals that can be ef ciently represented. The
information available to a user in the ID is in the form of compact
features associated with amplitude and frequency of stationary and
transient oscillations. The compact representation extends to data
which are considerably complex or broadband. For such and other
data, the features condensed into a sparse ID basis may reveal signal
information which may not be apparent otherwise. Moreover, the
novelty of the representation is not simply in its compactness. It can
be shown (analysis omitted here) that in addition to regular moments
of data, the ID extracts what may be called dynamic moments, which
are cross-products of various powers of the signal and its derivative.
How to exploit information carried in these moments is not clear at
this point, but it is clear that they reveal dynamic aspects not acces-
sible by standard SP methods.

In summary, the novel IDEA method provides three key prop-
erties: ef ciency, robustness, and the ability to accommodate time-
variant and even nonlinear signals within the ef cient framework.
Modeling the derivative in a delay domain was originally proposed
by Kadtke [3], but the mathematical underpinnings, including the
key capabilites of this method listed above, were not realized. These
capabilities usher in many potential uses in compression, coding,
recognition, classi cation, synthesis, and data mining applications.

4. EXPERIMENTS: PITCH ESTIMATION

Due to limited space we go directly to analysis of realistic data where
we consider the problem of pitch estimation. Speech is an exam-
ple of piecewise stationary or semi-stationary data containing abrupt
transitions between segments which are often quite different, e.g.
transitions between harmonic and nonharmonic phonemes. Due to

this nonstationarity, speech must be analyzed over fairly short frames
which leads to poor performance in high noise.

The example here uses a two-delay model ẋ = a1xτ1
+ a2xτ2

,
which was not explored above due to limited space. From experi-
ence, this model provides slightly more robust estimates of pitch for
certain phonemes than the one-delay linear ID models, although how
signi cant the differences in estimates may be is still being investi-
gated. The pitch is represented in the larger of the two delays of this
model, which we will denote by τ2.

The TIMIT database, sentence SX132, female speaker FAEM0
was chosen for the test. The parameters of the two-delay linear
model were estimated for different levels of white noise added to
the signal. In the interest of space, only τ2 information is plotted.
Fig. 1 shows the estimated τ2 for the noise free case, converted to
the frequency scale by the transform fs/τ2, where fs = 16000Hz
is the sampling rate. Plotted on the same graph is pitch estimate F0

computed using the ESPS method obtained from the Snack library
for Linux platforms (http://www.speech.kth.se/SNACK).
ESPS integrates normalized cross-correlation pitch candidate gener-
ation with dynamic programming to select the optimal pitch track.
Both ESPS and IDEA were run with settings of 25 msec and 50.4
msec respectively for the frame spacing (framelength in SNACK)
and the window size. The 107Hz lower bound was used with both
methods and 400Hz upper bound was used for ESPS method. The
ESPS method automatically calculates probability of voicing and re-
turns pitch values for what is deemed to be the voiced speech seg-
ments and 0 otherwise. Similarly, I used 400Hz upper bound cut-off
for IDEA output to separate voiced from unvoiced speech. Fig. 1
shows very close agreement between the two methods. IDEA pitch
values are slightly higher, likely due to τ2 being integer valued. The
gap in performance becomes evident at negative SNR (results not
plotted due to limited space). Speci cally, at -5dB SNR the ESPS al-
gorithm does not detect voiced speech in most of the sentence while
IDEA is able to track pitch in parts of the sentence.
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Fig. 1. Pitch estimated with IDEA and the ESPS (Snack library) al-
gorithms for the TIMIT database sentence SX132, speaker FAEM0.
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