
EASYSP: THE EASIEST FORM TO LEARN SIGNAL PROCESSING INTERACTIVELY

Javier Vicente, Begoña García, Amaia Méndez, Ibon Ruiz, Oscar Lage

University of Deusto (http://www.pas.deusto.es)

ABSTRACT

This paper describes an educational tool to facilitate the
study of digital signal processing. This application offers a
GUI support for integrating signal processing demos, using
plugins that execute Octave/Matlab functions. On the one
hand, this application permits students to change parameters
for several examples, classified in categories such as
modulations, filter design, speech and image signals
analysis and processing. On the other hand, it offers the
possibility of easily implementing two kinds of new signal
processing plugins, XML based and java based.

Index Terms— Education, Signal processing, Software
prototyping, Simulation software

1. INTRODUCTION

As it is known, students assimilate knowledge better if they
have interactive visual examples [1]. For example, if we
wanted to explain to the students how to use the Chebyshev
low pass filter, we would provide an application with which
students could vary the parameters that define the filter.
After that, we would check how these changes affect the
magnitude and phase diagram of the frequency response.
Those practices were developed with freely redistributable
software Octave. The disadvantage of this tool is that it
cannot carry out Graphic User Interfaces (GUI). This fact
does not allow students to achieve interactive applications
as they would develop.

The first step to make GUI possible in algorithms
developed by students was the joPAS Application Program
Interface (API). This API permit to implement GUI quickly
in Java program language and keep signal processing
calculus in Octave. This API was successful because it
provides users with a powerful tool to develop signal
processing applications. However, the main disadvantage of
this API is that students have to know Java to develop user
interfaces.

The second step was to release easySP. This application
permits two kinds of signal processing plugins to be
executed. The first are based on XML description files, in
which, graphics user interfaces and Octave sentences are
specified. The second ones, consist on Java programs.
Thanks to joPAS API the execution of Octave sentences is
allowed.

This application allows the create of demonstrations of
algorithms of signal processing easily and quickly. The
students do not need to learn another program language,
apart from Octave.

Besides the educational use of the innovative tool
presented, it could also be applied in a research
environment. As an example, the authors have made use of
easySP in a project for the analysis and processing of
oesophageal voices, as well as in a research for modelizing
vocal folds images.

2. OBJECTIVES

The principal objective is to obtain a tool that would allow
the study of the signal processing in an effective, quick and
pleasant way. The learning is divided into two depth levels.
In a first level, the student is only a simple user of the tool,
with which he would interact with the available
demonstrations of each of the areas of the signal processing.
And in a second level, the student must have a more creative
attitude, being he/she who increases the options of the tool
adding new demonstrations of signal processing.

For the real effectiveness of the tool, it must fulfill the
next requirements:

 Free Software based In this way an application
that can be freely distributed is achieved. The
students will be able to install it in their personal
computers without paying any kind of license.

 Multiplatform The same application would
work in different operative systems without doing
excessive changes.

 Intuitive The program must have a very intuitive
interface which allows the user to interact very
quickly with the tool.

 Complete The tool must have examples that
cover all the areas of the digital signal processing.
These examples would be divided in categories
that would be the following: Filter design,
modulations, and frequency analysis of signals.

 Open Source It must make it possible for
students to access the instructions written to
implement each example that forms the
application.

III ­ 7131­4244­0728­1/07/$20.00 ©2007 IEEE ICASSP 2007

 Scalable The application must be very easily
extendable through the addition of simple plugins.
These plugins allow the students to increase the
options of the tool by contributing new examples.

3. METHODS

Octave is the signal processing chosen language to
implements the algorithms of easySP [2]. Octave is a high-
level language for numerical calculation, whose syntax is
compatible with MATLAB, but is developed by the free
software community.

Octave is particularly oriented towards the scientific
world. Among its main differences from other programming
languages, the following stand out: native matrix operation,
native operation with complex numbers and interpreted
language.

These characteristics mean that scientific algorithms can
be developed in a far shorter time then in other
programming languages. Therefore, Octave is the ideal
language for the development of digital signal processing
algorithms, digital image processing, control systems,
statistics...etc. Furthermore, there are a great many
toolboxes that allow the user to avoid having to start from
scratch when wishing to deal with a particular subject
matter.

The joPAS API has been used as link between easySP
and Octave [3]. This API was developed by the Advanced
Processing of the Signal Team (PAS in Spanish) at the
University of Deusto. With joPAS the user can create Java
programs easily of through the implementation of all the
mathematical part in Octave. Thus joPAS is used by easySP
as a link between Java and Octave.

XML has been chosen as the support of plugin
description. The principal advantage of the use of XML
files is the easiness of reading and editing those files, any
user can edit a XML file from any text processor capable of
producing plain text files [4]. XML is a language very easy
to read, interpret and modify.

XML technology has allowed the creation of an easy
language for the configuration of processing. The user will
define the input parameters, the graphs that the application
must draw, as well as the functions that the application will
have to use to process the input signal.

4. DESIGN

The chosen method for implementing the modules of the
application is the use of plugins that define both the GUI
and the algorithm of the simulation. Thus, through the use
of XML the content of each of the six areas of the interface
is defined. The six areas in which the interface has been
divided are the following:

1. Plugin title.
2. Graphical representations area.
3. Set of graphs to be displayed.
4. Input parameters area.
5. Processing execution buttons.
6. Text area for the theoretical explanation of the

algorithm.

Figure 1. Parameterizable areas of the graphical interface

For the graphical interface definition it has been defined
a specific XML language. The defined tags serve both for
indicating the elements to be displayed in each area and to
specify the algorithm to be executed. The tags defined in
this language are the following:

 Category: element that shows the category in which
the processing will be listed. Thanks to this element
the application will arrange all the plugin that are
added by categories.

 Title: this element contains the title of the window
generated by the application.

 Description: theoretical explanation of the
processing implemented in the plugin.

 Input: they allow defining the default value that the
input will take, the name of the variable in Octave
and the name of the input parameter.

 Graph: these elements will identify unequivocally
every graph.

 Button: elements that will define every set of graphs
to visualize.

 Function: define the call to the Ocatve’s function or
sentences, which implements the signal processing.

 To examine the XML configuration file structure the
following example will be analyzed, in which it has been
defined an algorithm of a Chebyshev’s low pass filter:

To generate plugin’s XML configuration file, the desired
elements for each area must be identified. Once it has been
done, the description of the content of the XML file can be
performed. This description of the elements could be
grouped by each of the areas described previously.

III ­ 714

<?xml version="1.0" encoding="UTF-8"?>
<Plugin version="1.0">
 <Category>Filter Design</Category>
 <Title>Chebyshev Low Pass Filter</Title>
 <Description> The Chebyshev Type I Filter is the filter type that

results in the sharpest pass band cut off and contains the largest
group delay.</Description >

 <Input value="3000" OctaveName="fs">Cut-off</Input>
 <Input value="4000" OctaveName="fc">Roll-off </Input>
 <Input value="1" OctaveName="R">Ripple</Input>
 <Input value="40" OctaveName="A">Attenuation</Input>
 <Graph>northGraph</Graph>
 <Graph>southGraph</Graph>
 <Button> <Name>Frequency Response</Name>
 <Graph Title="Magnitude frequency response" xTitle="Frequency

(Hz)" yTitle="Amplitude" showIn="northGraph" varX="F"
varY="m"/>

 <Graph Title="Phase frequency response" xTitle="Frequency (Hz)"
yTitle="Amplitude" showIn="southGraph" varX="F"
varY="p"/> </Button>

 <Button> <Name>Time Response</Name>
 <Graph Title="Impulse Response" xTitle="Time (s)"

yTitle="Amplitude" showIn="northGraph " varX="t" varY="i"/>
 <Graph Title="Step Response" xTitle="Time (s)"

yTitle="Amplitude (Hz)" showIn="southGraph " varX="t"
varY="s"/> </Button>

 <Button> <Name>Delay Group</Name>
 <Graph Title="Delay Group" xTitle="Frequency (Hz)"

yTitle="Delay (s)" showIn="northGraph" varX="F" varY="g"/>
 </Button>
 <Function> <Name>Simulate</Name>
 <OctaveFile>filterDesign.m</OctaveFile>
 <Callback>[m,p,F,s,i,g,t]=filterDesign(fs,fp,R,A)</Callback>
 <RunOnStartUp>true</RunOnStartUp>
 </Function>
</Plugin>

Figure 2. XML code of the example configuration file.

Figure 3 shows the methodology to generate the XML
files describing the easySP application plugins.

Figure 3. Configuration file definition methodology.

The plugin implementation using joPAS API is much

more powerful, especially for creating graphic interfaces.
The user, in this case, must create a Java file instead of
configurating an XML file. This means that the user is
totally free to develop his own joPAS plugins. Therefore,
the students could enhance their creativity. Moreover, when
they could make more complex and powerful plugins than
using XML format, because joPAS plugins are not limited
to a predefined structure. Anyway, the user should follow a
few rules:

 The class of plugin must extend from the
JopasPlugins class.

 The constructor of the class must have the
following as input parameters: a Jopas reference
and a JFrame reference.

 It must implement two methods: getCategory and
getTitle.

5. RESULTS

As a result of the achievement of the specified objectives,
the easySP tool has been obtained, covering the learning of
the signal processing through the two proposed depth levels.
Once the student chooses the module with which he/she
wants to practice, a window like the one that can be seen in
figure 1 is shown.

 The example in figure 1 corresponds to a simulation of a
Chebyshev low-pass filter, in which the user can modify the
fundamental parameters that define the fundamental
characteristics of the filter and analyze the behavior of it
depending on the variation of those parameters. In the lower
part of the window, the student finds a theoretical
explanation of the filter behavior which can be verified
undertaking different tests.

Figure 4. Simulation of an ASK modulation.

III ­ 715

Once the student has understood the theoretical concepts
proposed in the module he/she can continue with another
one. For example, an ASK modulation, in which the time
signal and the spectrum signal of the modulation can be
analysed as shown in figure 4. This kind of teaching
methodology permits the concepts of the signal processing
to be assimilated in a pleasant way.

In the second depth level, students can develop new
modules following the XML structure defined in Figure 2,
or analyze the existing ones, to check the Octave sentences
that are necessary to implement the suggested module. In
Figure 5 the structure of the necessary XML file for the
parameterization of the example of the low-pass filter in the
figure 1 can be seen. As it is shown the creation of this file,
that defines the user interface’s structure, is simple and easy
to understand.

function [m,p,F,s,i,g,t]=filterDesign(fs,fp,R,A)
 Fs=20000;
 [n,w]=cheb1ord(fs/(Fs/2),f/(Fs/2),R,A);
 [b,a]=cheby1(n,R,w);
 [H,F]=freqz(b,a,1024,Fs);
 m=abs(H);
 p=unwrap(angle(H));
 [i,t]=impz(b,a,[],Fs);
 s=filter(b,a,ones(1,length(t)));
 g = grpdelay(b,a,1024);
Endfunction;

Figure 5. Octave’s function for a Chebyshev’s filter.

Students can analyze all Octave instructions of the
simulation of the filter that is implemented in the Octave’s
function filterDesign (figure 5), which contains all the
instructions to calculate the frequency, impulse and step
response, and group delay of the filter. This function has as
input parameter the variables defined in the Input elements
and returns the variables handled by the Graph elements.

function
[m,p,F,s,i,g,t]=filterDesign2(fs,fp,R,A)
 Fs=20000;
 [n,w]=buttord(fs/(Fs/2),f/(Fs/2),R,A);
 [b,a]=butter(n, w);
 [H,F]=freqz(b,a,1024,Fs);
 m=abs(H);
 p=unwrap(angle(H));
 [i,t]=impz(b,a,[],Fs);
 s=filter(b,a,ones(1,length(t)));
 g = grpdelay(b,a,1024);
Endfunction;

Figure 6. Octave’s function for a Butterwoth filter.

If the student would want to implement a new module
that performs the same but a Butterworth filter (Figure 7),
the XML file to user would be practically the same, he/she
would only have to change the Title field, the theoretical
description of the module, the Octave’s function to be
invoked and write that routine (Figure 6).

Figure 7. Simulation of the Butterword filter.

6. CONCLUSIONS

Thanks to the developed application, both the work of the
lecturer and work of the student has been facilitated. The
lecturer has a tool that allows him to transmit the knowledge
of digital signal processing, by means of the small
implementation of plugins like support to the theoretical
contents that wishes to teach.

The students assimilate better the knowledge of signal
processing by means of a tool with which they can interact.
In addition, they can develop new modules without too
much additional knowledge about Octave.

easySP could also help as an optimal framework for the
development and evaluation of both degree and research
projects.

7. ACKNOWLEDGEMENTS

The authors of this article want to be thankful to the
students, especially to Mikel Mendezona and to Ekhi
Arroyo Fernandez de Leceta, to have transmitted their
experiences with the application to us and to contribute
actively in the extension of the application by means of the
creation of new plugins.

8. REFERENCES

[1] Begoña García, Javier Vicente, "Herramienta para la
Simulación e Implementación Real de Sistemas Discretos FIR e
IIR" in Proc. TAEE’02, Las Palmas, Spain, 2002.
[2] K. Hornik, F. Leisch, A. Zeileis, "Ten Years of Octave Recent
Developments and Plans for the Future'' in Proc. DSC 2003, Wien,
Austria, 2003.
[3] Javier Vicente, Begoña García, Amaia Mendez, Ibon Ruiz,
Oscar Lage, "Teaching Signal Processing Applications With
joPAS: Java To Octave Bridge'' in Proc. EUSIPCO2006, Firence,
Italy, 2006.
[4] Clemens H. Cap, "XML goes to School: Markup for Computer
Assisted Learning and Teaching” in The European Journal of
Open and Distance Learning, 2000.

III ­ 716

