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ABSTRACT

With the proliferation of color display and input devices it has

become less expensive to demonstrate and teach color image

processing techniques. When teaching color image process-

ing, it is important to emphasize that it is not a multichannel

extension of monochrome image processing. This paper indi-

cates the elements of color image processing and color image

displays that every student and instructor should know. We

give examples that can be used to illustrate these concepts.

Index Terms— Image processing, Color, Education

1. INTRODUCTION

In a previous article [1], the importance of teaching the proper

display of monochrome images was discussed. Here the dis-

cussion is extended to processing and displaying of color im-

ages. We emphasize that the processing of color images is a

nonlinear vector process and not a simple extension of

monochrome image processing, where each of the three bands

is treated as an individual monochrome image. This paper de-

scribes the elements of color image processing that students

should know. The basic points that should be covered include:

1. Definition of a color space and its importance in im-

age recording and reproduction: Device-dependent and

device-independent color spaces.

2. Measurement of color images.

3. Color Gamut: definition and determination.

4. Color performance measures.

2. COLOR SPACES

To properly process a color image, it is necessary to know

the meaning of the numbers that make up the digital image.

Color images are often defined by a triple of RGB values,

but it is rare that the student knows exactly what these val-

ues mean. This meaning is directly related to the concept of

a color space. The relation is between the actual appearance

of the image, as sensed by a standard observer and the de-

vice control values that produce the display. It is important to

remind the student that the sensation of color is our reaction

to the continuous spectrum of radiation that is sensed by the

eye. The triple of values that defines color for most image

manipulations is a discrete sampling of this spectrum. The

values for an input image are related to the sampling of the

color by the eye; the values for an output image are related to

the production of a continuous spectrum that will be sensed

by the eye. The basic idea of a color space is that of a discrete

representation of the continuous radiation spectrum.

To demonstrate the importance of color spaces, the pro-

cess of observing, recording and reproducing color is simple.

Let the students observe a simple color image that has dis-

tinct, well-defined colors, such as the color grid shown in Fig.

1. Measure the colors using a device that gives the CIE val-

ues (XYZ or LAB). The CIE values are device-independent,
since they are measured relative to common standards and de-

fine the color in terms such that it can be reproduced by any-

one. Scan this image (record) using any desktop scanner to

produce a three-band digital image (RGB). These values are

device-dependent, since they are specific to the characteristics

of the scanner. Print the recorded image on a convenient desk-

top color printer. Let the students observe the input and output

images. Unless this is done with great care with calibrated de-

vices, the input and output images will show significant color

differences. This allows the instructor to discuss the process

in terms of color spaces.

Additional examples of the effects of using various device-

dependent color spaces are seen in

• a comparison of CRT and LCD displays that are driven

by the same RGB image file.

• a comparison of prints obtained from two types of print-

ers, e.g., color laser and color ink jet.

The CIE has defined color spaces that are independent of a

physical device. These color spaces depend upon a standard

human observer. Examples of such spaces include, CIEXYZ,

CIELAB, and CIELuv. The relation of these spaces to the

human visual system (HVS) should be emphasized. In par-

ticular, CIEXYZ is a direct linear transformation of the color
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Fig. 1. Color grid type image useful for comparing color

spaces.

matching functions associated with the sensitivity of the eye

in a standard observer; the CIELAB and CIELuv spaces are

attempts to define uniform color spaces, where Euclidean dis-

tances correspond to perceptual differences of the standard
observer. The transformations to these uniform spaces is non-

linear and leads to significant computational difficulties. The

CIELAB color space is an opponent color space where the el-

ement L∗ encodes luminance information and the elements a∗

and b∗ respectively encode red/green and blue/yellow chromi-

nance information. The HVS performs a similar encoding [7].

It is possible to transform colors defined in a device de-

pendent color space to an image in a device-independent color

space. This is often required to allow different devices to

communicate. This approach requires the determination of

the relationship between the RGB values and the CIE colori-

metric values created on the display. The opposite is not true.

It may be impossible to accurately transform an image from a

CIE color space to a device-dependent space, due to limits on

the colors that the device can reproduce. The set of device-

independent values that a device can reproduce define the em

gamut of the device.

In many research papers and text books, RGB images are

processed without relating the image data to a device and

hence back to the standard observer. This is not color image

processing but rather multi-band image processing. When the

human observer is to be the final judge of the algorithm qual-

ity (as opposed to machine vision applications) it is important

to stress the need to relate the image data back to the observer,

which will allow quantification of the color errors created by

the algorithm.

3. COLOR MEASUREMENT

In order to use the CIE color spaces effectively, the student

must be acquainted with devices that measure color in those

spaces. While few electrical and computer engineering de-

partments have such instruments now, it is recommended that

at least one low end device be purchased for demonstrations

in class. Colorimeters can be purchased for well under $1000.

Examples include Color Vision’s PrintProFix and Gretag Mac-

Beths Eye-One Design. The use of these devices allows the

student to relate the CIE values to actual colors produced in

the real world. The devices are also necessary for color cal-

ibration of input and output devices. If possible, we recom-

mend at least one high-end device that measures color spectra,

i.e., a spectrophotometer or spectroradiometer.

In the example of the color grid, it would be informative

for the student to measure the input and output images. The

error measures, as discussed later, should be computed. The

differences of the results obtained from printing the same im-

age file on different printers could also be measured. This al-

lows the student to test the rule of thumb for detectable color

errors: ΔEab errors less than 3 are usually not noticeable.

4. COLOR GAMUT

While it is true that monochrome output devices produce only

a limited range of densities, the effect of the limited range of

color is much more important. The range of colors that a de-

vice can produce is called its gamut, and is represented by

a three-dimensional solid. In [1], we discussed dealing with

the display of images that had different ranges. In the case of

color, it is much harder to bring two images into the same dis-

play range by simple manipulations, such as rescaling, which

worked well with monochrome images.

We present an example that can be used to demonstrate

artifacts from gamut mapping and the effect from gamut mis-

match. An RGB image was created on a monitor, shown

in Fig. 2, that consists of two figures. One figure is a disk

that displays a continuum of RGB values such that one of the

values is always 0, e.g., RGB = [0 240 120]). The other

figure is a series of bars, each of which smoothly step from

black to a primary color, e.g., red, green, blue, cyan, ma-

genta, yellow, and then to white. For example, the red bar

was created by stepping through the RGB vector sequence

{[0 0 0], [1 0 0], ..., [255 0 0], [255 1 1], ... , [255 255 255]}.

The smooth transitions between highly saturated colors make

these figures ideal for demonstrating gamut mapping artifacts.

Using a colorimeter and the methods discussed in [2, 3],

the display gamuts for a CRT monitor and a 3-color CMY

dye sublimation printer were determined. The actual gamut

intersections are shown in Figure 3.

The RGB values of the image in Figure 2 were then con-

verted to CIELAB values. The CIELAB values that were

within the gamut of the color printer were converted to the

CMY values necessary to obtain the desired CIELAB values.

The CIELAB values that were outside of the display gamut

of the printer could not be created by the printer. To demon-

strate the extent and the number of colors outside the gamuts,
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Fig. 2. Image used to evaluate gamut mapping artifacts.

Fig. 3. Monitor gamut given by grid and printer gamut given

by solid figure

Fig. 4. Result of mapping the monitor defined image in Fig-

ure 2 through a mapping that maps colors outside the printer

gamut to black.

these points in the image were mapped to a value of maximum

black. The resulting image is shown in Figure 4.

As can be seen in Fig. 4, a significant number of colors

are outside of the gamut of the printer. In the bar figure of Fig.

4, the banding, especially in the yellow bar, indicates that the

values are going in and out of the printer gamut as the monitor

device-dependent control values are stepped from black to a

primary color and then to white. Note also that the monitor

pure red does not map to a pure red on the printer.

5. PERFORMANCE MEASURES

Often in image processing, a comparison is made between

the images created by different algorithms. In monochrome

image processing, the standard measure of comparison is the

root mean square difference between the ideal image and the

processed image. It is usually recognized that this metric does

not match human perception but it is highly correlated. Oc-

casionally, other weighted metrics are introduced. In color

image processing, the color space in which the image is de-

fined greatly affects this number. It would be desirable if the

computed difference related well to the perceived difference.

When comparing solid colors, the color metrics defined

by the CIE are appropriate. There are a variety of measures

including ΔEab, ΔEuv , ΔE94 and CIEDE2000 [4, 5, 6]. In

the case of comparing color images, the spatial variations are

a significant component of the perceived quality of the match.

For this case, it is necessary to use a measure that accounts

for the spatial color frequency response of the human visual

system. The fact that the human observer is less sensitive to

chromatic variations compared to luminance variations is well

known and used in a variety of algorithms and devices.

Zhang and Wandell [7] introduced a color image metric

that incorporated color spatial filtering characteristics of the

HVS. The measure takes two color images and performs the

following operations.

• Transforms each to an opponent color space.
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• Spatially filters each channel with filters derived from

visual experiments. The support (size) of the spatial fil-

ters depends upon the viewing distance and the display

resolution.

• Recombines the filtered channels into a color image

in CIELAB color space. This color space is approxi-

mately uniform, which implies that mean square error

is a good indicator of color difference.

• Computes the standard ΔE or ΔE94 color difference

metric between the filtered images.

This measure, which is denoted as ΔEs can provide some

quantification of the effectiveness of an algorithm to distribute

errors where they are less visible. Fairchild and Johnson de-

veloped an appearance model (iCAM) that accounts for the

various adaptations of the HVS based upon the viewing con-

ditions [8].

Often, to maintain mathematical tractability, algorithms

are derived based on mean square error methods. Some of

these methods are quite useful. Unfortunately, some intro-

duce objectional color errors. Thus, it is important to empha-

size to the student that when evaluating the performance of

color image processing algorithms the error in one of the CIE

uniform color spaces should be computed.

We present a simple example to help illustrate the prob-

lem, shown in Fig. 5. This figure demonstrates the percep-

tual nonuniformity of a color space like sRGB and hence the

inappropriateness of using MSE as a measure for many algo-

rithms. In the figure, starting at the top left and going clock-

wise are sRGB values {32,38,83}, {29,53,71}, {27,245,17}
and {14,244,1}. The euclidean distance in sRGB color space

of the colors on the left to those on the right is 20. The ΔEab

difference in CIELAB color space is 21.5 for the top colors

(easily noticeable) and 1.2 (not noticeable) for the bottom col-

ors.

Another simple example is to take an image such as shown

in Figure 1, add noise and compute the difference measures.

Doing this for various noise distributions and an SNR of ap-

proximately 30dB in each RGB color band results in error

measures shown in Table 1. Note in the table that the MSE

computed in sRGB color space is smaller for the uniform

noise but the ΔE errors are greatest for the uniform noise.

Table 1. Error metrics for different noise distributions added

to image in Figure 1

METRIC Gaussian Uniform Poisson

MSE 69.36 69.12 68.80

ΔE 3.72 3.85 3.72

ΔEs 1.38 1.42 1.39

Δ E top=21.5 Δ E bottom=1.2   Root squared difference in sRGB is 20

Fig. 5. Example of color space nonuniformity. Top and

bottom pairs have the same difference in sRGB color space

(20) but in CIELAB, top pair ΔEab = 21.5, bottom pair

ΔEab = 1.2.
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