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ABSTRACT
In this paper, we introduce an optimal robust beamformer for

detecting a desired signal in presence of noise, strong interfe-

rers of unknown directions-of-arrival (DOA), and multipath.

The proposed approach achieves the highest possible signal-

to-interference plus noise ratio (SINR) by optimally estima-

ting the interference DOA, followed by a triply constrained

robust Capon beamformer. More specifically, we maximize

the SINR subject to nulling strong interferers and offer robust-

ness against multipath and steering vector uncertainty. Unlike

existing techniques, we examine explicitly the use of robust

beamforming for multipath mitigation to enhance acquisition

and tracking performance of GPS receivers.

Index Terms— Beamforming, interference, multipath, ro-

bustness, GPS.

1. INTRODUCTION
Global Navigation Satellite Systems (GNSS) enables the

calculation of the user position, velocity and timing infor-

mation using the time-of-arrival of signals transmitted by a

constellation of satellites, such as the US GPS system, the

Russian GLONASS and the European GALILEO [2]. They

have been widely used in civil and military applications such

as navigation, land surveying and mapping, and synchroniza-

tion for sensor networks [2]. However, the main challenges

are the vulnerability of the GNSS receivers to strong inter-

ference and the multipath effects [2]. Conventional GPS in-

terference suppression methods including time domain, fre-

quency domain, and time-frequency domain apply advanced

time-varying filtering and signal processing techniques to dis-

criminate against the interference [2, 6]. These methods have

the advantages of simple implementations and low cost, but

the drawback is that they cannot mitigate multiple narrow-

band, wideband interferers, or short-delay multipath [2, 6].

Adaptive antenna arrays have been very effective in comba-

ting both interference and multipath, owing to their abilities
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to differentiate between desired signals and interferers by ex-

ploiting the direction-of-arrival (DOA) information [1, 5, 10].

More importantly, robust beamformers (RB) have been pro-

posed to avoid performance degradation when some of the

underlying look-direction assumptions are violated [3]. Ho-

wever, most of these approaches deal only with steering vec-

tor (SV) mismatch and have not considered the coherence ef-

fect of multipath.

Unlike the standard adaptive array processing, the poten-

tial benefits of robust beamforming in navigation systems have

not been investigated thoroughly. Only recently in [4], RB

for interference mitigation in GPS receivers was successfully

applied. In this paper, we discuss the shortcomings of exis-

ting robust beamformers in achieving the highest SINR in the

case of unknown interference DOAs, and present a new robust

beamformer that incorporates multipath effects using appro-

priate constraints.

2. STANDARD ROBUST CAPON BEAMFORMING
2.1. Problem formulation

We consider a GPS receiver equipped with an M -element

array. The received signal vector x(tn) can be modeled as

x(tn) =
K∑

k=0

sk(tn − τk)ak +
I∑

i=1

ii(tn)v(θi) + n(tn), (1)

where K is the number of multipath components, sk(.) is the

kth path signal including the C/A code, τk is the time-delay

of the kth component, ak is the spatial signature of the kth

multipath, I is the number of interferers, ii(.) is the waveform

of the ith interference, v(θi) is the spatial signature of the ith
interference, and n(.) denotes the white Gaussian noise of

power σ2. Let sd(tn) def= s0(tn − τ0)a0
def= s0a0 denote the

desired GPS signal. Then, Eq. (1) can be expressed as

x(tn) = sd(tn) + sr(tn) + V(θ)i(tn) + n(tn), (2)

where sr(.) denotes the contribution of the K multipath re-

flections, V(θ) = [v(θ1), · · · ,v(θI)] is a M × I matrix for-

med by the SVs from different interference directions θ =
[θ1, · · · , θI ]T , i(tn) = [i1(tn), · · · , iI(tn)] is the vector of
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complex amplitudes of interference. In this paper, E{.} de-

notes the expectation operator, (.)T the transpose, (.)H the

conjugate transpose, and �(.) the real part of a complex.

Under the assumption that GPS signals, interference, and

noise are uncorrelated, the covariance matrix of the received

data vector has the form R def= Rs +Ru, where Rs is the co-

variance matrix of all the GPS signals, i.e., s(tn) def= sd(tn)+
sr(tn), and Ru is the sum of the interference and noise cova-

riance matrices. The robust beamforming approaches extend

the Capon beamformer so as to improve array output SINR

even when only an imprecise knowledge of steering vector a0

is available [3]. It minimizes the output power of beamfor-

mer subject to an uncertainty constraint on the array SV. In-

terestingly, most of these robust methods are equivalent and

belong to the extended class of diagonal loading approaches

of form [3] : wr = κ(R̂u + δI)−1a0, where δ denotes the

diagonal level, and κ is a scaling factor which is immaterial

for SINR [3]. Their differences lie in the distinct forms of κ
and in the choices of δ. For the considered recent class of RB

[3], the parameters κ and δ are directly linked to the SV un-

certainty set which allows the determination of diagonal loa-

ding level value. Here, we assume that the only knowledge

we have on a0 is that it belongs to the following uncertainty

ellipsoid a0 ∈ {a | (a0 − ā)C−1(a0 − ā) ≤ 1}, where C is

a given positive definite matrix and ā is the assumed SV of

the desired GPS signal. The doubly constrained robust Capon

beamformer (DCRCB) [3] was recommended for applications

requiring high SINR, and as such, is adopted below through

the constrained optimization formulation

min
a

aHR−1
u a s.t.

{
(a − ā)C−1(a − ā) ≤ 1,
‖a‖2 = M.

(3)

In practice, the interference-plus-noise covariance matrix Ru

is estimated by R̂ = (1/L)
∑L

n=1 x(tn)x(tn)H , where all

received signals have zero means and the L samples are inde-

pendent. For GPS applications, R̂ is an efficient maximum-

likelihood estimator (MLE) of Ru because the GPS signal is

negligible in the received data.

2.2. Highest SINR robust beamformer
In this section, we consider the multipath-free case, i.e.,

K = 1 in Eq. (1). In the case of strong interference with unk-

nown angles-of-arrivals θ, we establish the following results.

Proposition 1 In the presence of a desired signal in strong
interference with unknown angles-of-arrivals θ, robust beam-
formers achieve the maximum SINR if and only if the angles
estimator θ̂ is asymptotically efficient.

Proof : Let θ̂ be the available interference’s DOA estimate

vector which characterizes the interference subspace. Similar

to the case of conventional optimal weight [9], we can write

the robust weight vector in the form wH
r = κ̃

σ2 aH
0 P⊥

I (θ̂),
where κ̃ is a related scale factor depending on κ and δ, and

P⊥
I (θ̂) is the projection matrix onto a subspace orthogonal to

the interference subspace. Accordingly, the output of the RB

is expressed as follows

y(tn) = wH
r x(tn) = wH

r [s0a0 + V(θ0)i(tn) + n(tn)]

=
κ̃

σ2
aH

0 P⊥
I (θ̂) [s0a0 + V(θ0)i(tn) + n(tn)]

def= ys(tn) + yi(tn) + yn(tn), (4)

where θ0 is the vector of true values of interference DOA. The
parameter κ̃/σ2 can be omitted, since it is insignificant for

SINR computations. We replace P⊥
I (θ̂) by P⊥

I (θ0), as θ̂ →
θ0 for high INR.

- The signal output ys(n) is given by

ys(n) = s0aH
0 P⊥

I (θ0)a0 = s0‖P⊥
I (θ0)a0‖2. (5)

- The noise output is yn(tn) = aH
0 P⊥

I (θ0)n(tn), and the

noise power is expressed as

E{|yn(tn)|2} = σ2aH
0 P⊥

I (θ0)a0 = σ2‖P⊥
I (θ0)a0‖2. (6)

- The interference output yi(tn) = aH
0 P⊥

I (θ̂)V(θ0)i(tn), is

equal to zero if θ̂ is the actual interference direction vector

θ0. However, in a practical situation, these angles are not per-

fectly known. The estimation mismatch causes residual inter-

ference yi(tn) at the beamformer output. We apply Taylor-

expansion to V(θ) around the actual DOAs, θ0,

V(θ̂)i(tn) = V(θ0)i(tn) + V′(θ0)diag[i(tn)](θ̂ − θ0),

where V′(θ0)
def= [v′(θ1), · · · ,v′(θ1)] with v′(θi) being the

derivative of v(θi). Then,

V(θ0)i(tn) = V(θ̂)i(tn) − V′(θ0)diag[i(tn)](θ̂ − θ0).

By substituting the latter into yi(tn) we get yi(tn) =
aH

0 P⊥
I (θ̂){V(θ̂)i(tn)−V′(θ0)diag[i(tn)](θ̂−θ0)}. Because

of P⊥
I (θ̂)V(θ̂) = 0, we obtain

yi(tn) = −aH
0 P⊥

I (θ̂)V′(θ0)diag[i(tn)](θ̂ − θ0).

By ignoring high order terms when replacing θ̂ by θ0, we get

yi(tn) ∼= −aH
0 P⊥

I (θ0)V′(θ0)diag[i(tn)](θ̂ − θ0)
∼= −bH(θ̂ − θ0),

where bH = aH
0 P⊥

I (θ0)V′(θ0)diag[i(tn)]. Accordingly, the

interference output power is given by

E{|yi(tn)|2} = bHE{(θ̂ − θ0)(θ̂ − θ0)T }b. (7)

When θ̂ is an efficient estimator, E{(θ̂−θ0)(θ̂−θ0)T } achieves

asymptotically the Cramer-Rao lower bound CRB(θ). Hence,

the lowest power of the residual interference is

E{|yi(tn)|2} = bHCRB(θ)b. (8)

Finally, by combining (5), (6) and (8), the maximum achieved

SINR by optimally estimating the interference angles is

SINRmax =
E{|ys(n)|2}

E{|yi(tn)|2} + E{|yn(tn)|2} . (9)
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Proposition 2 RBs are asymptotically equivalent to nullstee-
ring for interference cancellation in which the DOA estimates
are provided by the MUSIC algorithm. Therefore, they fail to
achieve the maximum SINR.
Proof : Using similar analysis, Taylor series expansion of

V(θ) in the MUSIC estimator θm allows us to show that in

existing RBs, i.e., without accurate DOAs estimates, the RB

interference output power is given by

E{|ỹi(tn)|2} = bHE{(θ̂m − θ0)(θ̂m − θ0)T }b. (10)

Eq. (10) prove that RBs are equivalent to the beamformer in

which nulls are placed at the MUSIC DOA estimator. Since

E{(θ̂m−θ0)(θ̂m−θ0)T } > E{(θ̂−θ0)(θ̂−θ0)T } is a known

result for the MLE θ̂ [9], then E{|yi(tn)|2} < E{|ỹi(tn)|2}.

Therefore, the highest possible SINRr for a robust beamfor-

mer satisfy SINRr < SINRmax.

3. OPTIMAL ROBUST CAPON BEAMFORMING
3.1. Interference mitigation

As the GPS signals are typically 20 dB bellow the noise

floor, the received signal is dominated by the interference com-

ponent. In this case, the actual SV of the desired GPS signal

lies in the subspace orthogonal to the interference subspace.

This suggests a third additional constraint on the cost func-

tion by minimizing the projection of the signal steering vec-

tor onto the interference subspace. Therefore, we introduce a

new subspace based robust beamformer as a solution of the

following constrained optimization problem

min
a

aHPIa s.t.

{
(a − ā)C−1(a − ā) ≤ 1,
‖a‖2 = M

(11)

The key idea is to search the minimizer in a much smaller

feasible set to estimate the actual SV of the desired signal,

which could improve the SINR. The optimization problem in

(11) can be solved by the Lagrange multiplier method. Wi-

thout loss of generality, we consider C = εI, where ε is the

uncertainty level and I is the identity matrix. Define a func-

tion

f(a, λ, μ) = aHPIa + μ(2M − ε − āHa − aH ā)
+ λ(aHa − M), (12)

where μ ≥ 0 and λ ≥ 0 are the Lagrange multipliers. Hence,

the unconstrained minimization of (12) w.r.t. a, for fixed μ
and λ, is given by setting the following gradient to zero

∂f(a, μ, λ)
∂a

= 2PIa − 2μā + 2λa = 0. (13)

Clearly, the optimal solution is â = μ(PI + λI)−1ā. Now,

we minimize the cost function f w.r.t. μ, we obtain

μ̂ =
2M − ε

2āH(PI + λI)−1ā
. (14)

Inserting â and μ̂ and minimizing f w.r.t. λ, we derive the

following equation

āH(PI + λ̂I)−2ā(
āH(PI + λ̂I)−1ā

)2 =
M

(M − ε
2 )2

. (15)

The solution of λ̂ can be obtained by solving the above equa-

tion using Newton’s method. Substituting μ̂ and λ̂ into â gives

â = (M − ε

2
)

(PI + λ̂I)−1ā

āH(PI + λ̂I)−1ā
. (16)

To improve the performance according to proposition 1, we

exploit the optimally estimated interference DOA information

for interference subspace projection matrix estimation as

P̂I = V(θ̂)[V(θ̂)HV(θ̂)]−1V(θ̂)H . (17)

Another advantage of the use of DOA information is the re-

duction of the computational burdens in estimating PI accor-

ding to Eq. (17) because we avoid the eigendecomposition

operation for interference subspace estimation. To summa-

rize, we have the following essential result.

Proposition 3 The proposed optimal robust weight is compu-
ted by Capon beamforming method (ORCB), that is,

wORCB =
R̂−1â

âHR̂−1â
, (18)

where â is computed by substituting (17) into (16), and θ̂ is a
MLE of interference direction of arrivals.

3.2. Multipath mitigation
Consider one multipath s1(tn)a1 which can be expressed

as s1(tn)a1 = α1s0(tn)a1, where α1 is the relative coef-

ficient consisting of the product of the multipath power and

ej2πΔτ1 , where Δτ1 is the relative delay to the direct path.

Hence, the GPS signal is given by s0(tn)a0 + s1(tn)a1 =
s0(tn)(a0 + α1a1) with a1 is approximately known relative

to the direct-path GPS signal SV [4]. Then, s1(tn) and s0(tn)
can be viewed as the desired signal s0(tn) with another spatial

signature a0 + α1a1. Using a Capon beamformer, the signal

is therefore interpreted as an interference, and as such, is at-

tenuated. Thus, we observe that multipath reflection causes

a similar problem as the SV errors. To subtract the contri-

bution of the multipath spatial signature offset, we replace

a by (a + α1a1) in the objective function in Eq. (11). We

solve the resultant optimization problem using Lagrange mul-

tipliers method in the same way as in the above subsection for

the free-multipath case. Thus, we obtain

âm = (M− ε

2
)
(PI + λ̂I)−1ā

c
−α1(PI +λ̂I)−1PIa1, (19)

where c = āH(PI+λ̂I)−1ā+α1�
{
āH(PI + λ̂I)−1PIa1

}
.

Note that Eq. (19) is equivalent to estimating a using the

ORCB method while subtracting the contribution of the re-

flected path. Finally, we compute the multipath optimal robust

Capon beamformer (MORCB) by substituting (19) into (18),

as

wMORCB =
R̂−1âm

âH
mR̂−1âm

. (20)
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4. SIMULATION RESULTS

A linear uniform array of M = 7 sensors with half wave-

length spacing is used in the simulation. All results are achie-

ved via 200 Monte Carlo trials with comparison to the Capon

beamformer, DCRCB [3], as well as the optimal theoretical li-

mit. The theoretical limit is the highest SINR in Eq. (9) where

no SV mismatch is present and using the CRB given by [9]

CRB(θ) =
σ2

2L

[
�{[V′(θ0)H(I − PI)V′(θ0)] ⊗ Γ̂}

]−1

where Γ̂ = (1/L)
∑L

n=1[i
∗(tn) iT (tn)], with (.)∗ denoting

the conjugate operator, and ⊗ the Hadamard product.

• First experiment. We first examine the performance of

the proposed algorithm ORCB in the case of a strong jam-

mer and SV error. The satellite signal is located at 30 ˚ with

SNR = -20 dB, and the non-coherent interference is located

at 20 ˚ with SIR = -50 dB. The exact direction of arrival of

the desired GPS signal is φ0. The assumed value is φ0 ± Δ,

i.e., ā(φ0) = a(φ0 ± Δ). The uncertainty parameter was

set ε = 5.5 and Δ = 3 ˚ . Figure 1 shows the array output

SINRs versus the SNR of the GPS signal when the number

of snapshots is set to be L = 300. It is clear that the perfor-

mance of the proposed ORCB significantly outperforms both

the DCRCB and Capon beamformer. It is also evident that the

output SINR of the proposed ORCB is close to the optimal li-

mit value.
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Fig. 1. SINR beamformers output versus SNR of the desired GPS signal.

• Second experiment. We consider the same scenario as ex-

periment 1 with an additional reflected path from the direction

−φ0, a typical situation in vertical GPS arrays [4]. The mul-

tipath power is one half of the direct-path signal power. To

calculate the SINR, we use the following appropriate formula

SINR = s2
0|wH

MORCB âm|2/wH
MORCBR̂wMORCB

Figure (2) plots the SINRs output of the Capon beamformer,

DCRCB and the proposed MORCB. We observe that the best

performance is achieved by the proposed MORCB algorithm

in all input SNRs. Also, since Capon beamformer doesn’t take

into account SV errors, whereas DCRCB is not designed for

multipath situations, their respective performances degrade

severely.
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Fig. 2. SINR beamformers output versus SNR of the desired GPS signal.

5. CONCLUSION
We have shown that without interference DOA informa-

tion, RBs are only suboptimal, i.e., fail to achieve the highest

SINR. By optimally estimating the DOA of strong interfe-

rence and using this information to compute the interference

subspace, the performance of robust beamformers can be im-

proved significantly. More precisely, using the MLE for inter-

ference DOA estimation, the proposed ORCB robust beam-

former is optimal in the maximum SINR sense. To take mul-

tipath into account, we have proposed the modified algorithm

(MORCB). To simplify presentations, only one reflected path

has been considered, with the general case of several multi-

path reflections following similarly. The application of these

results to interference mitigation for GPS has shown that the

proposed algorithms outperform existing techniques.
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