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ABSTRACT

In this paper, we consider blind diversity reception and in-
terference rejection in multi-antenna communications context, in
terms of maximizing the output signal-to-interference-and-noise ra-
tio (SINR). More specifically, we demonstrate that independent com-
ponent analysis (ICA), although originally designed for noise-free
linear models, is able to provide essentially the best possible out-
put SINR among all linear transformations of received data in noisy
linear models. In particular, our experiments indicate that one of
the most widely applied ICA algorithms, equivariant adaptive source
identification (EASI) algorithm, is, in practice, identical with SINR
maximizing generalized eigenfilter in terms of SINR, even though
it does not use explicit knowledge of the channel states and noise
statistics. We also show that, in a special case of interference-free
(that is, noise only) system, the EASI algorithm attains the greatest
diversity gain blindly, i.e., performs as a blind maximal ratio com-
biner (MRC).

Index Terms— Blind diversity reception, blind interference can-
cellation, independent component analysis, multi-antenna communi-
cations

1. INTRODUCTION

Multiple transmit and/or receiver antennas are generally seen as one
of the key elements in future wireless communications system de-
velopments [1]. In terms of the overall link quality, multiple anten-
nas can be used for diversity purposes to mitigate the fading char-
acteristics of the individual links (diminish the effects of noise), and
also for removing other interfering signal components falling on top
of the desired signal. This is also the central theme in this paper.
In general, we consider the previous challenging system scenario
in which both additive noise and interference are present in the re-
ceived signals. Assuming multiple receiver antennas, the purpose is
then to push down the noise and interference as much as possible us-
ing linear signal processing techniques. Furthermore, the focus here
in general is on blind signal processing and reception in the sense
that the noise statistics and channel state information are assumed
unknown.

One relatively new idea in interference rejection is to employ
blind source separation (BSS) techniques [2]. What makes BSS
techniques attractive is their ability to separate signals from a mix-
ture of original source signals in a completely blind manner, i.e.,
without an explicit knowledge of waveform structure (modulation)
or mixing coefficients. In addition, typical BSS methods rely solely
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on higher-order statistical properties of data in the temporal domain,
which makes the methods also very robust against possible spectral
distortions. Communications related applications of BSS have been
found, e.g., in MIMO systems [3], I/Q processing receivers [4], DS-
CDMA blind multi-user detection [5] and DS-CDMA out-of-cell in-
terference cancellation [6].

Independent component analysis (ICA) [2] is a fairly new sta-
tistical technique by which BSS can be performed. In ICA a set of
observed signals or random variables are basically expressed as lin-
ear combinations of statistically independent components, which are
often called sources or source signals. The ICA problem is blind, be-
cause not only the source signals but also the mixing coefficients are
unknown. Many different methods have been proposed to solve the
ICA problem [2]. Most of these are proper ICA methods exploiting
the statistical independence of the sources, but there exist also other
approaches which utilize temporal correlations or nonstationarity of
the sources. In general, the mutual performance of these methods
depends largely on the validity of the above assumptions.

Typically, a noise-free linear mixing model is assumed in deriva-
tion of ICA algorithms in the literature. Needless to say, the noise-
free model is unrealistic in most of the applications, especially, in
telecommunications. Consequently, applications of ICA often as-
sume a noisy linear model, but exploit one of the ICA algorithms
developed for noise-free models. Thus, a presence of reasonable
level of additive noise is thought to cause “only” some feasible dis-
tortion due to the model mismatch. In this paper, we demonstrate
that, although noise can never be suppressed completely by any lin-
ear technique, the performance gain (in terms of input-output SINR)
obtained using ICA is practically identical to that of the optimum
linear receiver utilizing known channel and noise statistics. In other
words, ICA performs blind SINR maximization. We also bear out
that ICA provides the greatest diversity gain, i.e., maximizes output
SNR, among linear receivers assuming an interference-free model.
That is to say, ICA acts as a blind maximal ratio combiner (MRC).
In numerical experiments, we have selected a popular equivariant
adaptive source identification (EASI) algorithm to represent ICA.

2. SYSTEMMODEL AND LINEAR RECEIVERS

The basic system model used in the following assumes one transmit
antenna andM(≥ 2) receiver antennas used for diversity reception
and interference rejection. Thus the received signal at the m-th an-
tenna is of the form

xm(t) = hm,uu(t) + hm,vv(t) + nm(t) (1)

in which u(t) and v(t) denote the desired and interfering signals,
respectively, nm(t) models additive channel noise, and hm,u and
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hm,v are the corresponding channel coefficients. Assuming that a)
the source components, u(t) and v(t) are mutually uncorrelated, and
b) that the noise components, nm(t), m = 1 . . .M , are temporally
white, Gaussian and mutually uncorrelated, this yields an M × 2
linear model,

x(t) = As(t) + n(t), (2)

in which s(t) = [u(t) v(t)]T is a source signal vector with zero
mean and E{s(t)s(t)H} = I, n(t) = [n1 n2 . . . nM ]T is a zero
mean Gaussian noise vector with E{n(t)n(t)H} = σ2I (σ2 > 0)
and A = [hu hv] ∈ CM×2 (with hu = [h1,u h2,u . . . hM,u]

T and
hv = [h1,v h2,v . . . hM,v]

T ) is a full-rank mixing (or channel) ma-
trix, which is assumed to stay constant during one processing block
of data. Provided that it is assumed, in addition to a) and b), for all t
that source component processes, u(t) and v(t), are c) non-Gaussian
(or at least that one of them is) and d) mutually statistically inde-
pendent and, also, that e) n(t) is independent from s(t), then (2)
equals also a noisy ICA model [2]. The purpose in the following
is to blindly estimate u(t), i.e., suppress noise and interference as
much as possible under the assumptions a) – e). Notice also that the
assumption that u(t) is the desired signal and v(t) is the interfering
one is completely formal and any distinctive assumptions between
the source components are not made.

Let w ∈ C
M be an arbitrary linear filter and yw = wHx the

corresponding output of a linear receiver. Signal-to-interference-
and-noise ratio (SINR) of the output yw is then defined as

η(w) =
E{wHhu|u|2hHu w}

E{wH(hvv + n)(hHv v∗ + nH)w}

=
wHRuw

wH(Rv + σ2I)w
,

(3)

in which Ru = huh
H
u and Rv = hvh

H
v . Now, as seen in (3),

maximizing SINR among all linear transformations of received data,
i.e., maximizing η(w), equals to solving the generalized eigenvalue
problem [7] associated with matrix pair (Ru,Rv + σ2I). Hence,

max
w∈CM

η(w) = λ and (4)

arg max
w∈CM

η(w) = e, (5)

in which λ stands for the greatest eigenvalue of hermitian matrix
(Rv + σ2I)−1Ru and e for any (eigen)vector in the corresponding
eigensubspace. The vector e is called SINR maximizing generalized
eigenfilter (M-GEF) wrt. the source component u (i.e., the desired
signal here). This solution assumes the knowledge of the channel
coefficients and noise variance, and forms a natural reference tech-
nique for the forthcoming blind ICA developments.

It is also interesting to note that a linear minimum mean square
estimator (LMMSE) of a source can be shown to maximize SINR
among linear transformations. This is basically stated in [8] and in
references therein. Some earlier works have used the LMMSE recep-
tion as the reference method in their numerical evaluations (see, e.g.,
[9]). However, the generalized eigenfilter based approach shown in
this paper gives certain benefits, especially, in analytical studies and
comparisons of methods.

While the above eigenfilter based solution gives the optimum
reference technique, the other two natural reference receivers are
obtained by simply considering (i) only noise or (ii) only interfer-
ence. A conventional diversity reception, or maximal ratio combin-
ing (MRC) as often referred to, is actually closely related to M-GEF
reception. Nevertheless, in MRC, the main objective is to maximize

the signal-to-(AWG)-noise ratio (SNR) and, consequently, MRC ig-
nores possible interfering signal components which results in a sub-
optimum SINR performance, in general. However, M-GEF recep-
tion is consistent with MRC in the sense that, without interference,
v, these two methods coincide. This is easy to see by setting v = 0
and constraining w to have, say, a unit norm in which case (3) re-
duces to ordinary eigenvalue problem, which, for one, is well known
to yield the MRC solution [10]. In a noise-free model, as the other
extreme, infinite SINR is naturally obtained by inverting A. How-
ever in general, the inversion is not equal to M-GEF solution in the
noisy model, due to arbitrary noise amplification. These two meth-
ods (conventional MRC and pure system inversion) are used also in
the following as reference. Notice that channel knowledge is also
needed in these reference techniques.

3. ICA AND BLIND SINR MAXIMIZATION

In basic ICA, the goal is essentially to invert the model (2) blindly,
that is, to find an unmixing matrixW such thatWA is as close to
identity as possible by using only the observations x(t). Because
of the blindness, a solution of the ICA problem,W, can be unique
only up to left multiplication by arbitrary permutation and diagonal
matrices. Identifiability of such a W is guaranteed in theory only
for noise-free linear models and, consequently, basic ICA algorithms
can not produce exactly an inverse of matrix A (not even up to the
indeterminacies) if additive noise is present. Nevertheless, inverting
A does not lead to the best SINR gain in a noisy system anyway,
as stated above. For this reason, it is well-advised to compare the
performance of noise-free ICA algorithms to the above-mentioned
M-GEF bound if noisy model (2) is used.

Some of the resent studies have also proposed so called noisy
ICA algorithms [2] that assume a presence of additive noise and tries
to take it into account. However, finding an inverse of A is usually
a main objective also in these algorithms instead of, e.g., maximiz-
ing SINR. Other ICA related blind algorithms, that assume the noisy
model, try to de-noise received data either before or after the ICA
separation. These approaches, nevertheless, lead necessarily to non-
linear (affine, at least) processing of data.

In the following numerical experiments, we assume M = 2
receiver antennas and use the widely applied EASI algorithm [11],
which is originally intended to perform noise-free ICA. EASI is an
online algorithm which operates on individual samples of received
data. One step of the EASI algorithm is given as

B(t+ 1) = B(t)− μU(t)B(t), (6)

in which μ is a scalar step size and the update matrix, U(t), is de-
fined as

U(t) = y(t)y(t)H − I+ g(y(t))y(t)H − y(t)g(y(t))H . (7)

Here y(t) = B(t)x(t), I stands for identity matrix and g : C2 →
C
2 is an arbitrary nonlinear function. Since only the current sample

is used in each step of the algorithm, the update matrix (7) does not
vanish asymptotically. Instead, a stability point of the algorithm is
defined stochastically to be a matrix B′ for which the mean of the
update term (7) is zero (i.e., E {U(t)} = 0).

Fig. 1 depicts an example behavior of elements of matrix B un-
der a significant noise level (SNR=5 dB). In this 2 × 2-example,
coefficients converge after twenty thousand EASI updates.

Results in the next section show that the output SINR of the
EASI algorithm wrt. to the desired source is almost identical to M-
GEF bound. In theory, a small difference exists [12], but SINR fig-
ures are in practice almost indistinguishable according to the results.
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Fig. 1. Convergence of EASI update coefficients (elements of matrix
B). Received SNR and SIR are fixed to 5 dB and 0 dB, respectively.
Sample size is 50000.

Especially, SINR gain of EASI is significant compared to SINR of
plain inversion of A and, on the other hand, to MRC bound when
both noise and interference are present.

Here, as also in the continuation, signal-to-noise ratio (SNR) is
defined as the average ratio of the received desired signal power and
additive noise power. The signal-to-interference ratio (SIR), in turn,
is the average ratio of the received desired signal and interference
powers. Given the power normalization of the formal sources stated
below (2), the SIR values other than 0 dB are implemented by corre-
sponding scaling of the interference channel coefficients.

An important particular case is a system with finite SNR, but
in which interference is absent, thus, the case in which M-GEF and
MRC bounds coincide. Interestingly enough, also the EASI algo-
rithm provides exactly the same output SINR in this case. More pre-
cisely, assuming an interference-free 2 × 2-model, x = huu + n

and a vector ̂hu ∈ C
2 such that ̂hHu hu = 0, a matrix B′ =

[αhu β̂hu]
H ∈ C

2×2 is a stability point of the EASI algorithm,
i.e.,

E

{

yyH − I+ g(y)y − yg(y)H
}

= 0, (8)

for y = B′x and for appropriate complex scalars α and β. Re-
call, that hu is now the MRC filter [10]. We prove the tenability
of (8) rigorously in [12]. Here, simulation results support the claim
above. Fig. 2 plots the difference between simulated SINR of EASI
and M-GEF bound as a function of SIR. In the figure, the difference
decreases to negligible level (of roughly 0.01 dB-unit) when SIR in-
creases (i.e., when interference goes down). A difference in the order
of 0.01 dB-unit is basically explained by the finite sample statistics.

4. FURTHER NUMERICAL EXPERIMENTS

Numerical results in this section set against the performance of EASI
algorithm and SINR maximizing M-GEF approach under noisy en-
vironment. Also SINR performances of plain maximal ratio com-
bining (MRC) and inversion of the channel matrix, the matrix A in
model (2), are simulated in the experiments. Both of the latter meth-
ods are, thus, suboptimum since both an interfering source compo-
nent and additive noise are present.

In the experiments, two receiver antennas are used. Desired sig-
nals are QPSK signals where as interfering signals are 16-QAM sig-
nals. The selection of source constellations is more or less arbitrary,
and it should not affect the general validity of the results. Channel
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Fig. 2. Difference in output SINR between M-GEF and EASI. Re-
ceived SNR is 5 dB and sample size is 50000. 1000 independent
channel realization is simulated.

coefficients, i.e., elements of the matrixA, are drawn randomly from
zero mean Gaussian distributions (one distribution for each source
component) for each processing block of N = 50000 symbols of
data. Variances of these distributions are selected such that received
SNR and SIR values correspond to given values on average. M-
GEF bound is evaluated directly from the data model for each block.
Hence, the bounds are not affected by finite sample statistics and,
more importantly, they are the absolute upper bounds among all lin-
ear transformations of received data in case of each realization. Also
output SINR’s of the MRC and inversion of A are evaluated from
the model.

A simple third-order nonlinearity [11]

g = [g1 g2]
T : C2 → C

2; gi(z) = |zi|2zi, i = 1, 2, (9)

is used in the EASI algorithm in the experiments. A permutation
ambiguity of EASI outputs is circumvented by, first, evaluating the
output SINR wrt. the desired source component for both outputs
and, then, selecting the maximum one. Practical ways to select the
desired output component are not concerned in this paper. All the
gains plotted are wrt. the received SINR.

Figs. 3 and 4 show SINR gains as a function of SIR with fixed
received SNR. The figures illustrate that the gains of EASI algo-
rithm are, in practice, undistinguishable from M-GEF bounds. A
difference is less than 0.1 dB-unit in whole SIR range plotted in the
both figures. Figs. 5 and 6 give two examples of SINR gain vs. re-
ceived SNR with fixed received SIR. Again, performances of EASI
and M-GEF bound are essentially identical.

5. CONCLUSIONS

In this paper, we illustrated that basic independent component anal-
ysis (ICA) designed for noise-free linear models is able to provide
essentially the best possible output SINR among all linear transfor-
mations of received data, in the challenging case of having both addi-
tive noise and interference disturbing the desired signal observation
in a multi-antenna receiver context. Thus in effect, the ICA is able to
do joint diversity reception and interference cancellation in a blind
manner, such that the output SINR is maximized. In particular, our
experiments indicated that one of the most widely applied ICA al-
gorithms, EASI algorithm, is, in practice, identical with SINR max-
imizing generalized eigenfilter (M-GEF) in terms of SINR. In the-
ory, EASI can not attain exactly the M-GEF bound when both noise
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Fig. 3. Output SINR gains as a function of SIR. Received SNR is
fixed to 5 dB and number of channel realizations is 1000.
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Fig. 4. Output SINR gains as a function of SIR. Received SNR is
fixed to 10 dB and number of channel realizations is 1000.
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Fig. 5. Output SINR gains as a function of received SNR. Received
SIR is fixed to 0 dB and number of channel realizations is 1000.
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Fig. 6. Output SINR gains as a function of received SNR. Received
SIR is fixed to 15 dB and number of channel realizations is 1000.

and interference are present, but difference was negligible (< 0.1
dB-unit) in all of our experiments. We also showed that, in an im-
portant special case of interference-free (i.e., noise only) system, the
EASI algorithm provides precisely the greatest linear diversity gain
blindly, i.e., performs as a blind maximal ratio combiner (MRC).

The observed output SINR behavior almost identical to the the-
oretical upper bound rises a question whether the EASI algorithm,
or ICA in general, could be further fine-tuned at the algorithm level
to attain exactly the best linear SINR blindly also in theory. Such
an algorithm would readily be a generalization of both conventional
blind diversity reception and blind interference cancellation. In this
paper, we left this question open to be dealth with in future studies.
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