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ABSTRACT
In this paper, we establish the capacity region of a class of determin-
istic interference channels with common information. For such a
class of channels, each sender needs to transmit not only the private
information but also certain common information to the correspond-
ing receiver. Moreover, the channel outputs are deterministic with
respect to given channel inputs.

Index Terms— Interference channel, deterministic channel, com-
mon information, capacity region.

1. INTRODUCTION

As one of the fundamental building blocks, the interference chan-
nel (IC) was introduced by Shannon [1], where the two-way channel
was studied. Since then, many work has been done on this chan-
nel, which includes various inner bounds and outer bounds (see [2]
and references therein). Capacity regions are only found for some
special cases including the strong interference channel, a class of
degraded additive interference channels and a class of deterministic
interference channels. Most of the previous work is based on the as-
sumption that the source messages at the senders are statistically in-
dependent. However, the assumption fails in some emerging scenar-
ios, i.e., neighboring sensors in a dense wireless sensor network may
obtain correlated data due to the short distance in between, and when
the correlation can be extracted, the neighboring sensors share cer-
tain common information. The IC under this new setting is termed
as the interference channel with common information (ICC).

The ICC was rst studied by Maric et al. in [3], where the ca-
pacity region of the strong ICC (SICC) was reported. In [4], the au-
thors investigated the general ICC, and obtained an achievable rate
region which generalizes the capacity region for SICC as well as the
Chong-Motani-Garg region (one of the best achievable rate region
for IC) [5]. It is shown in this paper that our achievable rate region
is tight for a class of deterministic ICCs (DICCs).

2. CHANNEL MODEL

Fig. 1 depicts the graphical model of the class of DICCs. The chan-
nel is de ned by its nite channel input output alphabets Xt, Yt,
t = 1, 2, and the channel transition which is governed by the follow-
ing deterministic functions:

Vt = kt(Xt), t = 1, 2;

Y1 = o1(X1, V2), and Y2 = o2(X2, V1),

where V1 and V2 represent the interference signals caused byX1 and
X2 at the corresponding receivers. Source messages w0, w1, and w2

are assumed to be independently and uniformly generated over their
respective ranges. Furthermore, we require that there exist two more
deterministic functions, V2 = h1(Y1, X2) and V1 = h2(Y2, X2).
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Fig. 1. The class of deterministic interference channels with com-
mon information.

Note that the channel de ned above is similar to the one in-
vestigated in [6], but there is a slight difference. In [6], it is re-
quired that H(Y1|X1) = H(V2) and H(Y2|X2) = H(V1) for
all product distributions of X1X2. It has also been pointed out
in [6] that this requirement is equivalent to requiring the existence
of V2 = h1(Y1, X1) and V1 = h2(Y2, X2). Nevertheless, we re-
quire the latter instead of the former, and in fact the former is not
satis ed in our case.

We denote this class of DICCs by Cd. An (M0, M1, M2, n, Pe)
code exists for the channel Cd, if and only if there exist two encoding
functions

f1 : M0 ×M1 → Xn
1 , f2 : M0 ×M2 → Xn

2 ,

and two decoding functions

g1 : Yn
1 →M0 ×M1, g2 : Yn

2 →M0 ×M2,

such that max{P
(n)
e,1 , P

(n)
e,2 } ≤ Pe, where P

(n)
e,t , t = 1, 2, denotes

the average decoding error probability of decoder t, and is computed
by one of the following equations:

P
(n)
e,1 =

1

M

X

w0w1w2

p((ŵ0, ŵ1) �= (w0, w1)|(w0, w1, w2)),

P
(n)
e,2 =

1

M

X

w0w1w2

p((ŵ0, ŵ2) �= (w0, w2)|(w0, w1, w2)),

withM = M0M1M2.
A non-negative rate triple (R0, R1, R2) is achievable for the

channel Cd if for any given 0 < Pe < 1, and for any suf ciently
large n, there exists a (2nR0 , 2nR1 , 2nR2 , n, Pe) code.
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The capacity region for the channel Cd is de ned as the closure
of the set of all the achievable rate triples.

3. MAIN RESULT

Let Pd denote the set of all joint distributions p(·) that factor as

p(v0, x1, x2) = p(v0)p(x1|v0)p(x2|v0), (1)

where v0 is the realization of an auxiliary random variable V0 de-
ned on an arbitrary nite set V0. Let Rd(p) denote the set of all
rate triples (R0, R1, R2) such that

R0 ≤ H(Y1), (2)
R0 ≤ H(Y2), (3)
R1 ≤ H(Y1|V0V2), (4)
R2 ≤ H(Y2|V0V1), (5)
R1 + R2 ≤ H(Y1|V0V1) + H(Y2|V0V2); (6)
R1 + R2 ≤ H(Y1|V0) + H(Y2|V0V1V2), (7)
R0 + R1 + R2 ≤ H(Y1) + H(Y2|V0V1V2); (8)
R1 + R2 ≤ H(Y1|V0V1V2) + H(Y2|V0), (9)
R0 + R1 + R2 ≤ H(Y1|V0V1V2) + H(Y2); (10)
2R1 + R2 ≤ H(Y1|V0) + H(Y1|V0V1V2) + H(Y2|V0V2), (11)
R0 + 2R1 + R2 ≤ H(Y1) + H(Y1|V0V1V2) + H(Y2|V0V2);

(12)
R1 + 2R2 ≤ H(Y2|V0) + H(Y2|V0V1V2) + H(Y1|V0V1), (13)
R0 + R1 + 2R2 ≤ H(Y2) + H(Y2|V0V1V2) + H(Y1|V0V1),

(14)

for some xed joint distribution p(·) ∈ Pd.

Theorem 1 The capacity region of Cd is the closure of
[

p(·)∈Pd

Rd(p).

Proof: 1) Achievability: It suf ces to show that Rd(p) is achiev-
able for the channel Cd for a xed joint distribution p(·) ∈ Pd. Since
the joint distribution p(·) ∈ Pd does not involve V1 and V2, it ap-
pears incurring dif culty for us to apply the cascaded superposition
coding strategy developed for the general ICC to this channel, due
to the lack of auxiliary random variables. Nevertheless, because the
interferences V1 and V2 are determined by the channel inputs X1

andX2, we can extend the joint distribution in the form of (1) to one
containing V1 and V2 as

p(v0, x1, x2, v1, v2) = p(v0)p(x1|v0)p(x2|v0)

·δ(v1 − k1(x1))δ(v2 − k2(x2)), (15)

where δ(·) is the Kronecker Delta function. Since X1 and X2 are
conditionally independent given V0, the interferences V1 and V2 also
become conditionally independent given V0. Therefore, the extended
joint distribution (15) can be factored as

p(v0, x1, x2, v1, v2) = p(v0)p(v1|v0)p(v2|v0)

·p(x1|v1, v0)p(x2|v2, v0),

and the achievability of the regionRd(p) follows readily from The-
orem 4 in [4].

2)Converse: It suf ces to show that for any (2nR0 , 2nR1 , 2nR2 ,

n, Pe) code with Pe → 0, the rate triple (R0, R1, R2) must satisfy
(2)–(14) for some joint distribution that factors in the form of (1).

Consider a (2nR0 , 2nR1 , 2nR2 , n, Pe) code with Pe → 0. Note
that Pe → 0 implies P n

e,1 → 0 and P n
e,2 → 0. Applying Fano-

inequality [7] on decoder 1, we obtain

H(W0, W1|Y
n
1 ) ≤ n(R0 + R1)P

n
e,1 + h(P n

e,1) � nε1n, (16)

where h(·) is the binary entropy function and ε1n → 0 as P n
e,1 → 0.

It easily follows that

H(W1|Y
n
1 , W0) ≤ H(W0, W1|Y

n
1 ) ≤ nε1n. (17)

By symmetry, we can also get

H(W2|Y
n
2 , W0) ≤ H(W0, W2|Y

n
2 ) ≤ nε2n. (18)

We now expand the entropy termH(Y n
1 , V n

2 |W0, W1) as

H(Y n
1 , V

n
2 |W0, W1)

(a)
= H(Y n

1 , V
n
2 |X

n
1 , W0, W1)

(b)
= H(V n

2 |X
n
1 , W0, W1) + H(Y n

1 |V
n
2 , X

n
1 , W0, W1)

(c)
= H(Y n

1 |X
n
1 , W0, W1) + H(V n

2 |Y
n
1 , X

n
1 , W0, W1),

where (a) follows from the fact that Xn
1 = f1(W0, W1) is a deter-

ministic function of W0 andW1 for a given (2nR0 , 2nR1 , 2nR2 , n,

Pe) code; both (b) and (c) are based on the chain rule. Since Y1 is a
deterministic function of X1 and V2, H(Y n

1 |V
n
2 , Xn

1 , W0, W1) =
0. Similarly, due to V2 = h1(Y1, X1),H(V n

2 |Y
n
1 , Xn

1 , W0, W1) =
0. Hence, we obtain the following equality

H(V n
2 |X

n
1 , W0, W1) = H(Y n

1 |X
n
1 , W0, W1),

which can be further simpli ed as follows

H(V n
2 |W0, W1)

(a)
= H(Y n

1 |W0, W1),

H(V n
2 |W0)

(b)
= H(Y n

1 |W0, W1), (19)

where (a) again follows from the deterministic relation betweenXn
1

and (W0, W1), and (b) follows from the conditional independence
between V n

2 andW1 givenW0. Analogously, we can

H(V n
1 |W0) = H(Y n

2 |W0W2). (20)

One more pair of crucial inequalities are to be shown before we
proceed to the main part of the converse, and the two are listed as
follows

I(W1; Y
n
1 |W0) ≤ I(W1; Y

n
1 V

n
1 |V

n
2 W0), (21)

I(W2; Y
n
2 |W0) ≤ I(W2; Y

n
2 V

n
2 |V

n
1 W0). (22)

The inequality (21) can be derived in the following:

I(W1; Y
n
1 |W0) = H(W1|W0)−H(W1|Y

n
1 W0)

(a)

≤ H(W1|V
n
2 W0)−H(W1|Y

n
1 V

n
2 W0)

(b)

≤ H(W1|V
n
2 W0)−H(W1|Y

n
1 V

n
1 V

n
2 W0)

= I(W1; Y
n
1 V

n
1 |V

n
2 W0),

where (a) follows from the facts thatH(W1|W0) = H(W1|V
n
2 W0)

which is due to the conditional independence between W1 and V n
2

given W0, and “conditioning reduces entropy”, i.e., H(W1|Y
n
1 V n

2
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W0) ≤ H(W1|Y
n
1 W0); and (b) follows from “conditioning reduces

entropy” as well. Similarly, we can obtain (22).
Now we prove each of inequalities (2)–(14) with (17)–(22). Firstly,

inequalities (2) and (3) are obvious.
For (4), we have

nR1 = H(W1) = H(W1|W0)

(a)
= H(W1|W0V

n
2 )

= I(W1; Y
n
1 |W0V

n
2 ) + H(W1|Y

n
1 W0V

n
2 )

(b)

≤ H(Y n
1 |W0V

n
2 )−H(Y n

1 |W0W1V
n
2 ) + nε1n

(c)
= H(Y n

1 |W0V
n
2 ) + nε1n

≤

nX

i=1

H(Y1i|V2iW0) + nε1n, (23)

where (a) follows from the fact thatW1 and V n
2 are conditionally in-

dependent givenW0; (b) follows fromH(W1|Y
n
1 W0V

n
2 ) ≤ H(W1|

Y n
1 W0) ≤ nε1n; (c) follows fromH(Y n

1 |W0W1V
n
2 ) = H(Y n

1 |X
n
1

V n
2 W0W1) = 0.
Analogously for (5), we have

nR2 ≤
nX

i=1

H(Y2i|V1iW0) + nε2n. (24)

With respect to (6), we can get

n(R1 + R2) = H(W1) + H(W2)

= H(W1|W0) + H(W2|W0)

= I(W1; Y
n
1 |W0) + H(W1|Y

n
1 W0) + I(W2; Y

n
2 |W0)

+ H(W2|Y
n
2 W0)

(a)

≤ H(Y n
1 |W0)−H(Y n

1 |W0W1) + H(Y n
2 |W0)

−H(Y n
2 |W0W2) + n(ε1n + ε2n)

(b)
= H(Y n

1 |W0)−H(V n
2 |W0) + H(Y n

2 |W0)

−H(V n
1 |W0) + n(ε1n + ε2n)

≤ H(Y n
1 V

n
1 |W0)−H(V n

1 |W0) + H(Y n
2 V

n
2 |W0)

−H(V n
2 |W0) + n(ε1n + ε2n)

= H(Y n
1 |V

n
1 W0) + H(Y n

2 |V
n
2 W0) + n(ε1n + ε2n)

≤

nX

i=1

H(Y1i|V1iW0) +

nX

i=1

H(Y2i|V2iW0)

+ n(ε1n + ε2n), (25)

where (a) follows from inequalities (17) and (18); (b) follows from
equalities (19) and (20).

Regarding to (7), we have

n(R1 + R2) = H(W1|W0) + H(W2|W0)

(a)

≤ I(W1; Y
n
1 |W0) + I(W2; Y

n
2 |W0) + n(ε1n + ε2n)

(b)

≤ I(W1; Y
n
1 |W0) + I(W2; Y

n
2 V

n
2 |V

n
1 W0) + n(ε1n + ε2n)

= I(W1; Y
n
1 |W0) + I(W2; V

n
2 |V

n
1 W0)

+ I(W2; Y
n
2 |V

n
1 V

n
2 W0) + n(ε1n + ε2n)

≤ H(Y n
1 |W0)−H(Y n

1 |W0W1) + H(V n
2 |V

n
1 W0)

−H(V n
2 |V

n
1 W2W0) + H(Y n

2 |V
n
1 V

n
2 W0)

−H(Y n
2 |V

n
1 V

n
2 W2W0) + n(ε1n + ε2n)

(c)
= H(Y n

1 |W0) + H(Y n
2 |V

n
1 V

n
2 W0) + n(ε1n + ε2n)

≤

nX

i=1

H(Y1i|W0) +

nX

i=1

H(Y2i|V1iV2iW0)

+ n(ε1n + ε2n), (26)

where (a) follows from inequalities (17) and (18); (b) follows from
inequality (21); (c) follows from the facts that 1) H(Y n

1 |W0W1) =
H(V n

2 |V
n
1 W0), 2) H(V n

2 |V
n
1 W2W0) = 0 due to that V n

2 is de-
termined by Xn

2 which is again determined by (W0, W2), and 3)
H(Y n

2 |V
n
1 V n

2 W2W0) = H(Y n
2 |X

n
2 V n

1 V n
2 W2W0) = 0.

Similarly, we have

n(R1 + R2) ≤
nX

i=1

H(Y1i|W0) +
nX

i=1

H(Y2i|V1iV2iW0)

+ n(ε1n + ε2n), (27)

which corresponds to (9).
For (8), we have

n(R0 + R1 + R2) = H(W0W1) + H(W2|W0)

(a)

≤ I(W0W1; Y
n
1 ) + I(W2; Y

n
2 |W0) + n(ε1n + ε2n)

(b)

≤ I(W0W1; Y
n
1 ) + I(W2; Y

n
2 V

n
2 |V

n
1 W0) + n(ε1n + ε2n)

= I(W0W1; Y
n
1 ) + I(W2; V

n
2 |V

n
1 W0)

+ I(W2; Y
n
2 |V

n
1 V

n
2 W0) + n(ε1n + ε2n)

≤ H(Y n
1 )−H(Y n

1 |W0W1) + H(V n
2 |V

n
1 W0)

−H(V n
2 |V

n
1 W2W0) + H(Y n

2 |V
n
1 V

n
2 W0)

−H(Y n
2 |V

n
1 V

n
2 W2W0) + n(ε1n + ε2n)

(c)
= H(Y n

1 ) + H(Y n
2 |V

n
1 V

n
2 W0) + n(ε1n + ε2n)

≤
nX

i=1

H(Y1i) +
nX

i=1

H(Y2i|V1iV2iW0)

+ n(ε1n + ε2n), (28)

where (a), (b) and (c) follow from the same arguments for (26). Note
that the proof for (28) and the one for (26) only differ in the rst
few steps, and the rest follows from the same set of arguments and
procedures.

Instead of expressing n(R0+R1+R2) asH(W0W1)+H(W2|
W0), we set n(R0 + R1 + R2) = H(W0|W1) + H(W0W2). Fol-
lowing the similar steps used in deriving (28), we now obtain

n(R0 + R1 + R2) ≤
nX

i=1

H(Y2i) +
nX

i=1

H(Y1i|V1iV2iW0)

+ n(ε1n + ε2n), (29)

which corresponds to (10).
Now for (11), we can get

n(2R1 + R2)

= H(W1|W0) + H(W1|W0) + H(W2|W0)

(a)

≤ I(W1; Y
n
1 |W0) + I(W1; Y

n
1 |W0) + I(W2; Y

n
2 |W0)

+ n(2ε1n + ε2n)

(b)

≤ I(W1; Y
n
1 |W0) + I(W1; Y

n
1 V

n
1 |V

n
2 W0) + I(W2; Y

n
2 |W0)

+ n(2ε1n + ε2n)
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= I(W1; Y
n
1 |W0) + I(W1; V

n
1 |V

n
2 W0)

+ I(W1; Y
n
1 |V

n
1 V

n
2 W0) + I(W2; Y

n
2 |W0)

+ n(2ε1n + ε2n)

= H(Y n
1 |W0)−H(Y n

1 |W0W1) + H(V n
1 |V

n
2 W0)

−H(V n
1 |V

n
2 W0W1) + H(Y n

1 |V
n
1 V

n
2 W0)

−H(Y n
1 |V

n
1 V

n
2 W0W1) + H(Y n

2 |W0)−H(Y n
2 |W0W2)

+ n(2ε1n + ε2n)

(c)
= H(Y n

1 |W0)−H(Y n
1 |W0W1) + H(Y n

1 |V
n
1 V

n
2 W0)

+ H(Y n
2 |W0) + n(2ε1n + ε2n)

(d)
= H(Y n

1 |W0)−H(V n
2 |W0) + H(Y n

1 |V
n
1 V

n
2 W0)

+ H(Y n
2 |W0) + n(2ε1n + ε2n)

≤ H(Y n
1 |W0)−H(V n

2 |W0) + H(Y n
1 |V

n
1 V

n
2 W0)

+ H(Y n
2 V

n
2 |W0) + n(2ε1n + ε2n)

= H(Y n
1 |W0) + H(Y n

1 |V
n
1 V

n
2 W0) + H(Y n

2 |V
n
2 W0)

+ n(2ε1n + ε2n)

≤
nX

i=1

H(Y1i|W0) +
nX

i=1

H(Y1i|V1iV2iW0)

+

nX

i=1

H(Y2i|V2iW0) + n(2ε1n + ε2n), (30)

where (a) follows from inequalities (17) and (18); (b) follows from
inequality (21); (c) follows from the facts that H(V n

1 |V
n
2 W0) =

H(V n
1 |W0) = H(Y n

2 |W0W2),H(V n
1 |V

n
2 W0W1) = H(V n

1 |X
n
1 V n

2

W0W1) = 0, andH(Y n
1 |V

n
1 V n

2 W0W1) = H(Y n
1 | V

n
1 Xn

1 V n
2 W0

W1) = 0; (d) follows fromH(V n
2 |W0) = H(Y n

1 |W0W1). Follow-
ing similar procedures, we can easily obtain

n(R1 + 2R2) ≤
nX

i=1

H(Y2i|W0) +
nX

i=1

H(Y2i|V1iV2iW0)

+

nX

i=1

H(Y1i|V1iW0) + n(ε1n + 2ε2n), (31)

n(R0 + 2R1 + R2) ≤

nX

i=1

H(Y1i) +

nX

i=1

H(Y1i|V1iV2iW0)

+
nX

i=1

H(Y2i|V2iW0) + n(2ε1n + ε2n), and (32)

n(R0 + R1 + 2R2) ≤
nX

i=1

H(Y2i) +
nX

i=1

H(Y2i|V1iV2iW0)

+
nX

i=1

H(Y1i|V1iW0) + n(ε1n + 2ε2n), (33)

which correspond to (13), (12) and (14) respectively.
Note that we have obtained a number of inequalities (23)–(33)

which, together with (2) and (3), bound the rate triple (R0, R1, R2)
of the given code for the DICC channel. We now apply the technique
used to prove the converse for the capacity region of the MACC
in [8] and [9]. De ne V0 = W0, or equivalently V0i = W0, i.e., V0

or V0i is an auxiliary random variable uniformly distributed over the
common message setW0 = {1, ..., M0}. SinceX1 andX2 are con-
ditionally independent given W0, i.e., p(x1i, x2i|w0) = p(x1i|w0)
p(x2i|w0), we write p(x1i, x2i|v0i) = p(x1i|v0i)p(x2i|v0i).

Note that due to the existence of V0, the region inherits the con-
vexity from the achievable rate region for the general ICC. We can

now conclude that as n → ∞ and Pe → 0, we have the rate of the
given code (R0, R1, R2) bounded by (2)–(14) for some choice of
joint distribution p(v0)p(x1|v0)p(x2|v0). This completes the proof
of the converse and the theorem. �

Remark 1 1) As mentioned earlier, our assumption of this class of
deterministic channel is slightly different from the one given in [6].
We directly require the existence of functions V2 = h1(Y1, X1) and
V1 = h2(Y2, X2) such that we have the two equalitiesH(V n

2 |W0) =
H(Y n

1 |W0W1) and H(V n
1 |W0) = H(Y n

2 |W0W2). As demon-
strated in the above proof, the two inequalities are crucial, with-
out which we are not able to establish the converse. Moreover, the
two equalities in fact reduce to the assumptions made in [6] for the
case of no common information. Therefore, we can claim that the
existence of V2 = h1(Y1, X1) and V1 = h2(Y2, X2) is the more
general condition for this class of deterministic interference chan-
nels. 2) The capacity region of the class of DICCs which we derive
above generalizes the one given in [6].

4. CONCLUSIONS

In summary, it is shown in this paper that the achievable rate re-
gion obtained in [4] is indeed the capacity region for the class of
deterministic channels investigated. It is also demonstrated that the
assumption of the existence of the two crucial deterministic func-
tions is the key to establish the converse, and this is a generalized
assumption compared with the one raised in [6].
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