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ABSTRACT

We address the problem of interference coupling and
achievability of SIR targets in a multiuser system. Interference
is modeled by an axiomatic framework, with log-convex inter-
ference functions. There are efficient algorithms which perform
optimization over the boundary of the SIR region, but they
typically require that the boundary is achievable. We show
that achievability is closely linked to the interference coupling
in the system. This effect is already known from power control
theory, where achievability is commonly ensured by assuming
an irreducible coupling matrix. In this paper, we consider a
more general interference model which is based on an axiomatic
framework. In order to describe the interference coupling in
the system, the concept of a dependency matrix is introduced.
It is shown that the achievability of the boundary only depends
on the combinatorial structure of this matrix. Necessary and
sufficient conditions are derived.

Index Terms— resource allocation, QoS provision, power control

1 INTRODUCTION

Signal processing for wireless communications often deals with

the problem of reducing or filtering interference in a multiuser net-

work. Often, it is not sufficient to model the system as a collection

of point-to-point radio links. In this case, mutual interference causes

decencies which can affect many functionalities of the system.

This motivates a system-wide optimization, where interference

mitigation and resource allocation go hand in hand. The philosophy

behind this cross-layer approach has already influenced current 3G

standards, like HSDPA or HSUPA.

A thorough understanding of the achievable (or supportable)

quality-of-service (QoS) region provides the basis for the develop-

ment of algorithms for adaptive resource allocation and interference

management. Assuming a one-to-one mapping QoS = φ(SIR),

we can focus our attention on the achievable SIR region, which

is defined as the set of SIR vectors γ ∈ R
K
+ , which can be

simultaneously supported by all K communication links. This set

is generally limited by the impact of mutual interference.

This work is supported by the STREP project No. IST-026905 (MASCOT)
within the sixth framework programme of the European Commission.

The kth user has a signal-to-interference ratio

SIRk(p) = pk/Ik(p) , (1)

where Ik(p) is the interference (and possibly noise) caused by

other users in the network, and p ∈ R
K
+ is the power allocation

vector.

Definition 1. An SIR vector γ > 0 (component-wise greater) is

achievable if there exists a power allocation p > 0 such that

SIRk(p) ≥ γk, k = 1, 2, . . . , K . (2)

The achievable SIR region is

S = {[SIR1(p), . . . , SIRK(p)] : p > 0} . (3)

First work on the achievable SIR region S appeared in the

context of satellite communications and CDMA (see e.g. [4] for an

overview). This work was mainly focused on power control under

the assumption of a constant link gain matrix. Later, the results

motivated researchers to combine power allocation with signal

processing techniques, e.g. in the context of beamforming [5]–[7].

Another line of research is Yates’ axiomatic framework [8], which

defines an interference function I(p) by only requiring certain

monotonicity and scalability properties. This abstract approach has

been proven to be a useful tool, which includes many existing

problems as special cases (see e.g. [8], [9]). The axiomatic approach

was further generalized in [10], where fundamental properties of

the SIR region were studied.

In this paper, we focus on the general class of log-convex

interference functions. Log-convex interference functions appear

naturally in many problems related to resource allocation (see

the examples in Section 2). An important aspect of log-convex

interference functions is the convexity of the associated SIR re-

gion for certain types of log-convex QoS-to-SIR mappings, as

studied in [11], [12]. This property plays an important role for

the development of algorithms for multiuser resource allocation,

which optimize over the boundary of the SIR region. Examples

are max-min fairness and weighted utility optimization. Iterative

optimization strategies for both problems were proposed in [1],

[10] for example.

However, these algorithms depend on the achievability of the

boundary of the QoS (resp. SIR) region. If the boundary is not

achievable, then this typically means that algorithms, which are
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designed to perform optimization over the boundary, will not

converge. So the question of achievability, as defined by (2),

is fundamental for the development of numerical optimization

strategies.

In this paper, we follow previous work (see e.g. [4]), where the

SIR region is defined as a sub-level set depending on an inf-max

optimum. This definition is also consistent with previous work on

the Perron root of an irreducible coupling matrix (see e.g. [1],

[4]), where the boundary is always achievable due to the common

assumption of irreducibility.

Since our approach is based on the more general axiomatic

framework, we cannot use the conventional framework based on

a coupling matrix. A different approach is required instead. The

boundary is only achievable if the inf-max optimum exists. In other

words, it is possible that certain targets γ can only be achieved

asymptotically, which prevents convergence of the algorithms.

General conditions for the achievability of boundary points were

derived in [10], but this analysis turned out rather complicated.

For instance, achievability of one boundary point does not imply

achievability of the entire boundary. In general, there is no single

criterion for characterizing achievability of the complete region.

One main contribution of this paper is to show that the SIR

region associated with log-convex interference functions has a

different behavior. It will turn out that achievability of one boundary

point implies achievability of the entire SIR region. We completely

characterize the interference coupling and provide necessary and

sufficient conditions for achievability. The analysis is based on

the special structure of log-convex interference functions [13]. In

particular, we exploit that every log-convex interference function

can be decomposed in a product of elementary functions.

2 LOG-CONVEX INTERFERENCE FUNCTIONS

We start by introducing and analyzing basic properties.

2.1 Axiomatic Framework and Examples
A function I(p) is called “interference function” if it fulfills the

following axioms:

A1 I(p) ≥ 0, p ∈ R
K
+

A2 I(αp) = αI(p) α ∈ R+

A3 I(p(1)) ≤ I(p(2)) if p(1) ≥ p(2)

A4 I(exp{s}) is log-convex on R
K .

Here, we use the substitution p = exp{s} (component-wise

exponential). The function I : R
K �→ R+ is log-convex on R

K if

and only if the logarithm of the function is convex, or equivalently

I((1−μ)x̂+μx̌
) ≤ I(x̂)1−μ · I(x̌)μ, ∀μ ∈ [0, 1], x̂, x̌ ∈ R

K .

It should be noted that Yates’ model [8] is an important special

case of the generic model A1-A4. We can introduce a (K + 1)-

dimensional extended power allocation, with a fixed normalized

noise power pK+1 = 1. For the model A1-A3, it is irrelevant

whether the power I(p) is caused by noise or an interfering user,

so it is general enough to incorporate a possible noise component.

If constant noise is present, and if I(p) is strictly increasing in

pK+1, then joint power allocation can be performed with a fixed-

point iteration [8].

But the following results hold with or without the assumption of

such an additional monotonicity property. In this paper, we focus

on the special property A4 (log-convexity). In the following we

will give some motivating examples for log-convex interference

functions.

1) Linear interference function: Consider the linear model

Ik(p) = [V p]k, ∀k , (4)

where V ≥ 0 is a fixed link gain matrix, which contains the

interference coupling coefficients. This is the classical model,

which is used as a basis for many results in power control theory

and related areas (see e.g. [4]). Under certain conditions, the log-

convexity of Ik(exp{s}) can be exploited to show convexity of the

resulting log-SIR region (see e.g. [10] and the references therein).

The model (4) is a special case of the more general axiomatic

framework A1-A4.

2) Spectral radius: It is known [4] that the SIR region under the

linear model (4) can be characterized by the spectral radius ρ(q) :=
ρ
(
diag{eq}V )

. The function ρ(q) fulfills A1-A4 so, it is itself

a log-convex interference function. This provides an additional

motivation for analyzing log-convex interference functions and

shows that the theory is not limited to interference in a strict sense,

but can also be applied to related areas.

3) Robustness: Another example for a log-convex interference

function is

Ik(p) = max
zk∈Zk

[V (z)p]k, ∀k , (5)

where the parameter zk, chosen from a closed bounded set Zk, can

stand for the impact of error effects. So (5) can be seen as a model

for the worst-case interference. Performing power allocation with

respect to (5) guarantees a certain robustness. In the literature there

exist many examples for robust power allocation strategies (see e.g.

[14], [15]).

4) Elementary log-convex interference function: A further ex-

ample, which will play a fundamental role in this paper, is the

function

I(p) = C ·
∏

l

(pl)
wl , (6)

with coefficients C > 0 and wl ≥ 0, ‖w‖1 = 1. Using the

substitution p = es, it can be verified that I(es) is log-convex

on R
K . In addition, I(p) fulfills A1-A4, so it is a log-convex

interference function. Note, that the normalization ‖w‖1 = 1 is

important since it ensures A2.

In the following section it will be shown that (6) can be regarded

as a basic building block, into which every log-convex interference

function can be decomposed.

2.2 Representation Theorem
For every log-convex interference function I(p) defined by A1-

A4, there exists a product decomposition of the form (6). However,

the coefficient C generally depends on the power allocation. To this

end, we introduce a function

fI(w) = inf
p>0

I(p)∏K
l=1(pl)wl

. (7)

It can be shown that log fI(w) is the conjugate of the convex

function log I(es). With A1, fI(w) ≥ 0 is always fulfilled. But

we are interested in the non-trivial case where fI(w) is strictly

positive. All coefficients for which this is fulfilled are contained in

the set

L(I) =
{
w ∈ R

K
+ : fI(w) > 0

}
. (8)
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We have the following result.

Lemma 1. Let I(w) be an interference function, and w ∈ R
K
+ . If

fI(w) > 0 then ‖w‖1 = 1.

Lemma 1 shows that all coefficients w ∈ L(I) fulfill the

condition ‖w‖1 = 1. This property can be exploited in order to

show the following result.

Theorem 1. Every log-convex interference function I(p), char-
acterized by A1-A4, with an arbitrary p > 0, can be represented
as

I(p) = max
w∈L(I)

(
fI(w) ·

K∏
l=1

(pl)
wl

)
. (9)

Representation (9) provides the basis for our analysis. It will be

shown show that the coefficients w can be used to characterize

achievability.

3 ACHIEVABILITY

We start by characterizing the QoS region by means of a

min-max balancing problem. To this end, assume that q =
[q1, . . . , qK ]T > 0 is a vector containing target QoS of all K
users. Let γk be the inverse function of φk, then γk := γk(qk) is

the minimum SIR level needed to achieve the target qk. In the

following we will also collect the targets in a diagonal matrix

Γ := Γ(q) = diag{[γ1(q1), . . . , γK(qK)]}.

An important indicator for achievability is the function C(γ),

which is the min-max optimum

C(γ) = inf
p>0

(
max

1≤k≤K

γk · Ik(p)

pk

)
. (10)

The optimum C(γ) is a single measure for the quality of a

multiuser channel. If there exists a point p > 0 such that

SIRk(p) ≥ γk, ∀k, then it can be observed from (10) that

C(γ) ≤ 1. Conversely, C(γ) ≤ 1 implies that γ can be approached

arbitrarily close. Note, that sometimes γ is only achieved in an

asymptotic sense. In this case, γ is not achievable according to

Definition 1 given in the introduction.

Definition 2. The SIR region with no power constraints is defined

as the sub-level set

F = {γ > 0 : C(γ) ≤ 1} . (11)

For the linear model (4), the min-max optimum C(γ) is simply

the spectral radius ρ
(
diag{γ}V )

, so the definition is consistent

with the classical definition of the SIR region (see e.g. [4]). But

the axiomatic model is much more general, and also incorporates

non-linear strategies. The price of generality is that achievability of

the boundary of F cannot be guaranteed. We have S ⊆ F , where

S is the achievable region, as defined by (3).

In the following we exploit log-convexity (property A4) in order

to derive conditions under which γ ∈ F is achievable.

3.1 Characterization of Interference Coupling
Achievability depends on the coupling between the users. For

the linear model (4), this was ensured by requiring an irreducible

coupling matrix V .

For the general case of log-convex interference functions con-

sidered here, we can use an asymptotic characterization to describe

the mutual coupling of log-convex interference functions.

Let el be the all-zero vector with the l-th component set to one,

i.e.,

[el]n =

{
1 n = l

0 n 
= l .

We have the following result.

Lemma 2. Assume there exists a p̂ > 0 such that limδ→∞ Ik(p̂+
δel) = +∞, then

lim
δ→∞

Ik(p + δel) = +∞ for all p > 0. (12)

Here we have exploited A2 and the fact that Ik(p + δel) is

monotonically increasing in δ. We are interested in the behavior

when the increase is unbounded. This asymptotic behavior is

independent of p, thus it is a suitable way of characterizing the

interference coupling for arbitrary interference functions satisfying

A1-A3..

Definition 3. We refer to AI as the asymptotic matrix of I.

[AI ]kl =

⎧⎨
⎩

1 if there exists a p > 0 such that

limδ→∞ Ik(p + δel) = +∞
0 otherwise.

(13)

Notice that because of Lemma 2, the condition in (13) does not

depend on the choice of p.

The characterization provided by the following matrix DI is

generally weaker.

Definition 4. DI is called dependency matrix. We have

[DI ]kl =

⎧⎨
⎩

1 if there exists a p > 0 such that Ik(p + δel)
is not constant for all δ > 0

0 otherwise.

That is, [AI ]kl = 1 implies [DI ]kl = 1, but the converse need

not be true in general. But with property A4, both characterizations

are indeed equivalent.

Theorem 2. Let I1, . . . , IK be log-convex interference functions,
then AI = DI .

3.2 Achievability of the QoS Region
The next theorem shows that if an arbitrary point γ on the

boundary of F is achievable, then all γ ∈ F are achievable.

This special behavior is caused by log-convexity and cannot be

generalized to arbitrary interference functions characterized by A1-

A3 (examples are provided in [10]).

Achievability depends on the existence of a lower bound on the

interference function I(p), which is directly linked to the structure

of the dependency matrix. By exploiting the representation (9), the

following result can be shown.

Theorem 3. Let I = [I1, . . . , IK ]T be a vector of log-convex
interference functions, such that there exists a representation (9)
with an irreducible matrix Ŵ = [ŵ1, . . . , ŵK ], with ŵk ∈ L(Ik).
Then for all γ > 0 there exists a fixed-point p∗ > 0 such that

ΓI(p∗) = C(γ)p∗ . (14)

If (14) is fulfilled, then p∗ achieves the infimum (10). With γ ∈
F , it follows that γ is achievable, i.e., p∗k/Ik(p∗) ≥ γk, ∀k.

Next, we characterize the existence of a non-achievable point.
Assume that the dependency matrix DI is reducible. Without loss
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of generality, we may assume that after simultaneous permutations
of rows and columns, D is reduced to canonical form (see e.g. [16,
p. 75]), with irreducible blocks along the diagonal. We have DI =
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D(1,1) 0 0 . . . 0

. . . 0 . . . 0

0 D(r,r) 0 . . . 0

D(r+1,1) . . . D(r+1,r) D(r+1,r+1) 0 0
.
.
. . . .

.

.

.
.
.
.

. . . 0

D(N,1) . . . D(N,r) D(N,2) . . . D(N,N)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The diagonal square blocks D(n) := D(n,n) have a minimum

dimension of two because of A1. We have r isolated blocks with

indices 1, . . . , r. Let 1, , 2, . . . , Lr be the indices associated with

the isolated blocks. If

inf
p>0

max
k>Lr

γkIk(p)

pk
= C1(γ) > 0 , (15)

then it can be shown that there exists a γ > 0 such that the min-

max problem has no optimizer p∗ > 0 (no fixed point exists).

Together with Theorem 3, this can be used in order to show the

following result.

Theorem 4. Let C(γ) > 0 for all γ > 0. Then all γ > 0 are
achievable if and only if DI (resp. AI) is irreducible.

Finally, it can be shown that an alternative characterization exists

in terms of the coefficient matrix W = [w1, . . . , wK ], where wk

is the coefficient vector for the interference function of the kth user,

as introduced in Section 2.2:

Let I be such that C(γ) > 0 for all γ > 0. Then all γ > 0 are

achievable if and only if there exists an irreducible matrix Ŵ and

constants C1, . . . , CK > 0, such that

Ik(p) ≥ Ck

K∏
l=1

(pl)
ŵkl , 1 ≤ k ≤ K . (16)

for all p > 0. This provides a link to the representation result

Theorem 1.

4 ALGORITHM

If a boundary point γ > 0 is achievable, then the min-max

optimal power allocation solving (10) can be computed by an

iterative technique [10]. Since the interference functions Ik(p)
are defined in an abstract way, a particular realization is required.

To this end, we consider the robust interference functions (5),

where the parameter-dependent matrix V (z) models the interfer-

ence coupling. Individual path gains of the K users can easily

be incorporated by scaling the rows of V (z). The algorithm is

summarized as follows:

p(n+1) = pev(ΓV (z(n))) (principal eigenvector) (17)

with z
(n)
k = arg max

zk∈Zk

[V (z)p(n)]k, k ∈ {1, . . . , K} . (18)

As long as the chosen γ are achievable, the iteration will converge

to the global optimum of the min-max balancing problem (10).

5 CONCLUSIONS

Future cross-layer strategies will require a thorough understand-

ing of the QoS achievability region. In this paper we study an

axiomatic interference model with log-convex interference func-

tions. This class of interference functions not only incorporates the

conventional linear model as a special case, but can also be applied

for the analysis of robust transmission schemes.

There are efficient algorithms which perform optimization over

the boundary of the region. However they all require that the

boundary is achievable. Thus, the characterization of achievability

for axiomatic log-convex interference functions is a problem with

high practical relevance.

We show that achievability is closely linked to interference

coupling. This principle is well known from power control theory,

where achievability is commonly ensured by assuming an irre-

ducible coupling matrix. However, a different approach is required

for the general axiomatic framework considered in this paper. We

introduce the concept of a dependency matrix in order to provide

necessary and sufficient conditions for achievability.

The focus of this paper is not so much on the algorithmic aspects,

but rather at providing a theoretical framework, which may prove

useful for the future development of algorithms for QoS balancing

and resource allocation.
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