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ABSTRACT

High signal-to-noise ratio (SNR) performance of the blind min-
imum output energy (MOE) receiver and the Capon channel estima-
tion technique are analyzed in the large code division multiple ac-
cess (CDMA) network where both the spreading factor and number
of users go to in nity with the same rate. Upper and lower bounds
on the signal-to-interference-plus-noise ratio (SINR), ef ciency and
asymptotic ef ciency of the MOE receiver are derived and compared
with those for the optimum minimum mean squared error (MMSE)
receiver.

Index Terms— Asymptotic performance analysis, blind mini-
mum output energy receiver, Capon channel estimation technique,
code division multiple access.

1. INTRODUCTION

Blind multiuser receivers for code division multiple access (CDMA)
systems have gained a considerable attention due to their spectral ef-
ciency and robustness. Among various blind multiuser receiver de-
sign approaches, the minimum output energy (MOE) approach con-
stitutes a promising trend [1]-[3]. In this approach, the receiver out-
put energy in minimized subject to a set of constraints which guar-
antee that the energy of the user of interest at the receiver output is
held constant. In this paper, we consider the large CDMA system in
which the number of users go to in nity, while the system load, i.e.,
the ratio of the number of users to the spreading factor, remains con-
stant and analyze the high signal-to-noise ratio (SNR) performance
of the blind MOE receiver operating in such system. Note that, in
[4] we have analyzed the MOE receiver in the large CDMA system
where our main focus was on the study of the channel effects on
the performance of the MOE receiver relative to that of the MMSE
receiver.

To be able to use the results from the reach literature of ran-
dom matrix theory, it is a common convention in large CDMA sys-
tem analysis to model the user spreading codes as random vectors
[5]. We follow the same convention, and, further, to simplify the
derivations to a representable level, we con ne ourselves to the case
when the spreading vectors are drawn from i.i.d. circular Gaussian
distribution. Note that the Gaussian spreading vectors have been fre-
quently used in the literature to analyze the asymptotic performance
of the MMSE receiver [6]-[8]. Moreover, simulations show that our
results are still valid for more general i.i.d. distributions.

We show that if the system load is less than one, then, as the
noise power converges to zero, the signal-to-interference-plus-noise
ratio (SINR) of the blind MOE receiver goes to in nity irrespective
to the interference powers. This near-far resistance property is quite

interesting due to the fact that the multipath channel information of
the user of interest is not available to the MOE receiver. For the
case when the system load is larger than one, we obtain lower and
upper bounds on the SINR of the MOE receiver that are independent
from the realizations of the spreading codes and are determined by
the system load, the constraints set used, and the user channels. We
also obtain bounds on some other important performance measures
of the MOE receiver such as ef ciency and asymptotic ef ciency and
compare our results with the known results for the MMSE receiver.

TheMOE approach can also be used to estimate the user channel
vector. It has been shown that [1] if the set of constraints are chosen
to maximize the so-obtained minimum output energy, then, under a
certain identi ability condition, the constraint vector approaches the
channel vector of the user of interest at high SNRs. We apply our
analytical results to show that, in the large system of our concern,
the channel identi ability condition holds as long as the system load
is less than one.

2. SIGNALMODEL

Consider a K-user synchronous DS-CDMA system with periodic
spreading codes. The received baseband signal can be modelled as
[1], [3]

x(t) =
∞X

m=−∞

KX
k=1

bk(m)wk(t−mTs) + v(t). (1)

where Ts is the symbol period, bk(m) and wk(t) denote the mth
unit-variance data symbol and the signature waveform of the kth
user, respectively, and v(t) is the zero-mean additive white random
noise process with the variance σ2. Let hk(t) denote the multipath
channel impulse response of the kth user that is xed during the ob-
servation period and its support is in the interval [0, LTc) where L is
a positive integer and Tc is the chip period [1], [7]. Let N � L be
the spreading factor. In this paper, we assume that the users spread-
ing vectors ck =

ˆ
ck[0], ck[1], . . . , ck[N − 1]

˜T are augmented at
the transmitter by the cyclic pre xes of length L−1 to eliminate the
effect of inter-symbol-interference induced by the multipath chan-
nel. Sampling (1) in the interval corresponding to the nth transmit-
ted symbols and removing the cyclic pre xes, the received sampled
data vector is given by [1], [7]

x(n) =
KX

k=1

bk(n)wk + v(n). (2)

As wk(t) is the convolution of the spreading code ck with the multi-
path channel hk(t), its sampled version wk can be written as wk =
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Ckhk [1] where theN×LmatrixCk consists of the rstL columns
of an N × N circulant matrix whose rst column is ck and hk =
[hk,0, hk,1, . . . , hk,L−1]

T with hk,i � hk(iTc). Throughout the
manuscript, we assume that hk has a bounded norm [7]. Denot-
ing hk(z) =

PL−1
q=0 hk,qz

−q, it directly follows from the latter as-
sumption that |hk

`
ej 2π

N
(n−1)

´
|2 ≤ B where B is a constant and

n = 1, . . . , N . Furthermore, let us assume without any loss of gen-
erality that the rst user is the user of interest and h1 (and, hence,
w1) are unknown to the receiver. The linear blind MOE approach
to design the receiver vector f is to minimize the output energy
f

HE{x(n)x(n)H}f � f
H
Rf subject to some constraints which

ensure that the energy of the rst user at the receiver output is held
constant. A popular set of such constraints is CH

1 f = h̄ where h̄
is the design parameter vector [1], [2]. The MOE receiver resulting
from the latter constraints is given by [1], [2]

fm(h̄) = R
−1
C1(C

H
1 R

−1
C1)

−1
h̄. (3)

Note that the above constraints guarantee that for any arbitrary h̄,
the energy component of the rst user at the receiver output is E1 =
|fm(h̄)H

w1|
2 = |h̄H

h1|
2. Using the idea of Capon estimation tech-

nique to maximize the energy of the user of interest after interference
suppression at the receiver output, one can select h̄ as [1]

hc = arg max
h̄

fm(h̄)H
Rfm(h̄) s.t. ‖h̄‖ = 1. (4)

Using (3) in (4), the solution to the latter problem is [1]

hc = Ω
“
(CH

1 R
−1
C1)

−1
”

. (5)

It can be obtained from (2) that

R =
KX

k=1

wkw
H
k + σ2

I =
KX

k=1

Ckhkh
H
k C

H
k + σ2

I. (6)

From (6) and the matrix inversion lemma, we have

(CH
1 R

−1
C1)

−1 = (CH
1 A

−1
C1)

−1 + h1h
H
1 (7)

whereA � R−w1w
H
1 . Applying (7) to (5), we obtain

hc = Ω
“
(CH

1 A
−1
C1)

−1 + h1h
H
1

”
. (8)

Moreover, it can be shown that [9]

SINR(fm(h̄)) =
|h̄H

h1|
2

h̄H(CH
1 A

−1C1)−1h̄
. (9)

3. ASYMPTOTIC ANALYSIS

In this section, we analyze the asymptotic properties of the MOE
receiver (3) and the Capon channel estimate (5) as N and K go
to in nity with the same rate and σ2 tends to zero. As it can be
observed from (8) and (9), these asymptotic properties are closely
related to the asymptotic behavior of CH

1 A
−1
C1. The following

theorem holds.
Theorem 1: Assume that the entries of ck are zero-mean i.i.d.

circular Gaussian random variables with variance 1
N
and thatN and

K go to +∞ with K
N
→ α. Then,

“
C

H
1 A

−1
C1

”−1

−T−1 e.i.p.
−→ 0 (10)

where e.i.p.
−→ denotes elementwise convergence in probability and T

is a positive de nite Hermitian Toeplitz matrix with

[T]1m =
1

N

NX
l=1

e−j 2π

N
(m−1)(l−1)

φl

, m = 1, . . . , L (11)

where [T]1m is the mth entry of the rst row of T, and φl is the
unique real and positive solution to

φl = σ2 +
1

N

KX
k=2

˛̨
hk(ej 2π

N
(l−1))

˛̨2

1 +
1

N

NX
n=1

˛̨
hk(ej 2π

N
(n−1))

˛̨2
φn

. (12)

Moreover, assuming that for all k and n there exists a constant b > 0
such that

|hk

`
ej 2π

N
(n−1)

´
|2 ≥ b (13)

it holds for α < 1 that

lim
σ2→0

σ2
T−Ω

e.i.p.
−→ 0 (14)

lim
σ2→0

T
−1 e.i.p.

−→ 0 (15)

and for α > 1 that

lim
σ2→0

T−Θ
e.i.p.
−→ 0. (16)

MatricesΩ andΘ are positive de nite and

λmin(Ω) ≥
b(1− α)

B
(17)

λmax(Ω) ≤ min

j
1,

B(1− α)

b

ff
(18)

λmin(Θ) ≥
b

B2(α− 1)
(19)

λmax(Θ) ≤
B

b2(α− 1)
(20)

where λmin and λmax stand for the smallest and the largest eigen-
values of a matrix, respectively.

Proof of Theorem 1 will be presented in [9]. Note that (13)
is a reasonable assumption due to fact that the sporadic (k, n)s for
which |hk

`
ej 2π

N
(n−1)

´
|2 = 0 do not have any impact on the value

of φl and, hence, they can be discarded from (12). The following
results can be directly obtained from Theorem 1.

Corollary 1: Assume that α < 1. Then, as σ2 → 0,

hc
e.i.p.
−→ ejθ h1

‖h1‖
(21)

where θ ∈ [0, 2π). Moreover, for any arbitrary h̄ such that h̄H
h1 	=

0, SINR(fm(h̄)) converges to in nity.

Note that (21) directly follows from using (15) in (8). Conver-
gence (15) can also be used in (9) to verify that SINR(fm(h̄)) →
+∞. The above properties of the Capon channel estimate (5) and
the MOE receiver (3) worth further elaboration as follows.

• It has been shown in [1] that if

[C1 W1] is a full column-rank matrix (22)

III ­ 658



whereW1 = [w2, . . . ,wK ], then, as σ2 → 0, hc converges
to a scaled version of h1. Corollary 1 proves that as N →
∞ with K

N
→ α, the identi ability condition (22) can be

substituted by the much simpler condition of α < 1. That
is certainly a desirable property since veri cation of (22) is
a prohibitively dif cult task especially when N and K are
large.

• As limσ2→0 SINR(fm(h̄)) = +∞ for α < 1, it follows
that in the absence of noise the blind MOE receiver (3) is
able to completely suppress the effect of the multiuser inter-
ference regardless of the interferer powers. It is an interesting
result which shows that even without knowing the signature
of the user of interest w1 or having an estimate of the chan-
nel vector h1, the receiver (3) still has the near-far resistance
property. This property is due to the fact that w1 is equal
to C1h1 where C1 is a known matrix. The MOE receiver
(3) effectively uses this known structure of w1 to suppress
the interfering signals having the signatures wi = Cihi for
i = 2, . . . , K.

Note also that if the actual channel order is L̃ < L, i.e., h1 =
[h̃T

1 0
T ]T where h̃1 is a vector of length L̃, then, still (15) can

be used in (8) to obtain (21). The latter observation shows that if
α < 1, then the Capon channel estimation technique is insensitive
to the channel order overestimation in the high SNR regime.

It is known that if the number of active users exceeds the signa-
ture length, i.e., α > 1, then, even in the absence of noise, the SINR
of the MMSE receiver fmmse = R

−1
w1 (that uses the knowledge of

the channel and achieves the maximum SINR) does not converge to
in nity [5]. It is intuitive that the similar property should also hold
for the MOE receiver (3). The following corollary veri es such a
property by nding an upper bound on limσ2→0 SINR(fm(h̄)).

Corollary 2: Assuming that α > 1 we have

b|h̄H
h1|

2

B2(α− 1)‖h̄‖2
≤ lim

σ2→0
SINR(fm(h̄)) ≤

B|h̄H
h1|

2

b2(α− 1)‖h̄‖2
.

(23)
Moreover, if b = B we have

lim
σ2→0

SINR(fm(h̄)) =
|h̄H

h1|
2

B(α− 1)‖h̄‖2
(24)

and
lim

σ2→0
SINR(fm(hc)) =

1

α− 1
. (25)

Inequalities (23) are directly obtained from using (19) and (20)
in (9). Moreover, if b = B, or, equivalently,

˛̨
hk(ej 2π

N
(l−1))

˛̨
is

constant for all k = 1, . . . , K and l = 1, . . . , N , then (24) follows
from the equality of the upper and lower bounds in (23). Note that˛̨
hk(ej 2π

N
(l−1))

˛̨
does not change with k and l if the received users

powers are equal and the channels are single path, that is, hk =
hk,qk

eqk
where qk ∈ {0, 1, . . . , L−1}, eqk

is the vector whose qkth
entry is one and the rest are zero, and |hk,qk

|2 = B. It can be shown
in such case that hc converges to a scaled version of h1 = h1,q1eq1

[9]. Using the latter result in (24), equation (25) follows. Note that
if N → ∞ with K

N
→ α, and, moreover, if the received users

powers are equal and the channels are single-path, then the SINR of
the MMSE receiver also converges to 1

α−1
at high SNRs [5].

It should be mentioned that if B is much larger than b, then the
derived bounds in (23) may become loose. However, for instance,
in the downlink transmission scheme where the channel tap corre-
sponding to the line-of-sight is much larger than the other taps, it

can be shown that B and b are close, and, hence, (23) offers tight
bounds on the asymptotic value of limσ2→0 SINR(fm(h̄)).

We can also use Theorem 1 to analyze other performance mea-
sures of the MOE receiver such as ef ciency and asymptotic ef -
ciency. Note that the ef ciency of the receiver vector f , denoted here
by C(f), is the ratio of the achieved SINR to the SINR when there
is no interference [5]. Moreover, the asymptotic ef ciency of the
receiver vector f is η(f) = limσ2→0 C(f). We have

Corollary 3: As N → ∞ with K
N
→ α, the ef ciency of the

general blind MOE receiver (3) satis es

C(fm(h̄))−
σ2‖h̄‖2

h̄HT−1h̄

i.p.
−→ 0 (26)

and is bounded by

σ2

σ2 + αB
≤ C(fm(h̄)) ≤ 1. (27)

Moreover, it holds that

b(1− α)

B
≤ η(fm(h̄)) ≤ min

j
1,

B(1− α)

b

ff
, α < 1 (28)

and
η(fm(h̄)) = 0 α > 1. (29)

From (27) it follows that if either α or B tends to zero, C(fm(h̄))
converges to unity. It is an expected fact since either of the above
cases implies that the effect of interference is negligible. Moreover,
it follows from (28) that if α < 1 and b = B, then η(fm(h̄)) =
1−α which, under the similar conditions, is equal to the asymptotic
ef ciency of the MMSE receiver [5]. Finally, similar to the MMSE
receiver [5], η(fm(h̄)) = 0 for α > 1.

4. SIMULATIONS

Numerical examples have been carried out to validate our analyti-
cal results. In Fig. 1, 200 sets of users spreading codes have been
randomly generated from ± 1√

N
for N = 128 and the resulting ex-

perimental downlink SINR(fm(e1)) versus the system load α > 1
is shown for all sets of spreading codes. A random vector of length
L = 5 is drawn from a zero-mean complex Gaussian distribution

with the covariance matrix Γ =

»
γ1 0

0 γ2I4

–
and is used as

the channel vector between the base station and the user of inter-
est. To simulate the line-of-sight at the rst channel tap, in the left
and the right subplots γ1/γ2 = 10 dB and 30 dB are chosen, re-
spectively. Moreover, the upper, the middle, and the lower subplots
correspond to the scenarios in which tr(Γ)/σ2 is equal to 20, 40,
and +∞ dB, respectively (for the latter case, σ2 = 0 is used). In
each subplot, the lower and upper bounds of (23) are also depicted.
It can be observed from the subplots corresponding to γ1/γ2 = 10
dB that if the line-of-sight component is not strong enough, due to
the fact that B is much larger than b, the lower and upper bounds
of (23) are loose. On the contrary, when γ1/γ2 = 30 dB, the re-
sulting lower and upper bounds are very tight and are able to pre-
dict limσ2→0 SINR(fm(e1)) with a very good precision. It can
also be noticed from the gure that the lower and upper bounds
of (23) are in fact relevant for the high SNR regime, i.e., when
tr(Γ)/σ2 → +∞. Finally, as the lower subplots show, if α > 1,
then limσ2→0 SINR(fm(e1)) is upper-bounded, verifying our dis-
cussion in Section 3.
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Fig. 1. SINR(fm(e1)) versus α for tr(Γ)/σ2 = 20 dB (upper sub-
plots), 40 dB (middle subplots), and +∞ (lower subplots).

Figure 2 shows downlink C(fm(e1)) versus α. The user sig-
natures and the channel vectors are drawn using the same distribu-
tions as in Fig. 1. Again, in the left and the right subplots γ1/γ2

is equal to 10 and 30 dB, respectively. Moreover, the upper, the
middle, and the lower subplots correspond to the scenarios in which
tr(Γ)/σ2 is equal to 20, 40, and 60 dB, respectively. The lower and
upper bounds of η(fm(e1)) = limσ2→0 C(fm(e1)) given in (28)
are also shown. It can be observed from Fig. 2 that as tr(Γ)/σ2 in-
creases, these bounds become more relevant. Moreover, the derived
lower and upper bounds of (28) are specially useful for the case of
strong line-of-sight which, in this example, is realized by choosing
γ1/γ2 = 30 dB. It can be observed from the lower subplots that, as
SNR increases, C(fm(e1)) converges to zero for α > 1. The latter
observation veri es (29).

5. CONCLUSIONS

In this paper, we have analyzed the performances of the blind MOE
receiver and the Capon channel estimation technique in the case
when the noise power tends to zero and both the spreading factor
and the number of users go to in nity with the same rate. We showed
that if the system load, i.e., the ratio of the number of users to the
spreading factor, is less than one, then, for any arbitrary interference
powers the SINR of the blind MOE receiver goes to in nity as the
noise power converges to zero. For the case when the system load
is larger than one, we derived lower and upper bounds on the SINR
of the MOE receiver. We also obtained the bounds on ef ciency and
asymptotic ef ciency of the MOE receiver and analyzed particular
cases when the so-obtained upper and lower bounds become equal.

It was also shown that if the system load is less than one, then the
Capon channel estimate converges to a scaled version of the chan-
nel vector of the user of interest as the noise power approaches to
zero. The latter result shows that the channel identi ability condi-
tion derived for the conventional (bounded number of users) scenario
reduces to a much simpler condition as the number of users goes to
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Fig. 2. C(fm(e1)) versus α for tr(Γ)/σ2 = 20 dB (upper subplots),
40 dB (middle subplots), and 60 dB (lower subplots).

in nity.
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