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ABSTRACT

In this paper, we analyze the error recovery performance of
variable length codes (VLCs) transmitted over binary sym-
metric channel (BSC). Simple expressions for the exact mean
symbol error rate (MSER) and the exact variance of sym-
bol error rate (VSER) for any crossover probability pe are
presented. We also prove that the mean error propagation
length (MEPL) derived for single bit inversion error case is
a scaled value of MSER when pe tends to zero. Comparisons
with simulations demonstrate the accuracy of the MSER and
VSER expressions.

Index Terms— Variable length codes, Symbol error rate,
Error recovery, BSC.

1. INTRODUCTION

Variable length codes (VLCs) have found widespread use for
efficient encoding in many practical situations. However, a
major drawback of VLC is that the decoder synchronization
is required for correct decoding, and a loss of synchronization
often leads to error propagation. To assess the error recov-
ery (also called synchronization recovery) performance for
VLCs, Maxted et al. developed a state model to calculate
the statistical moments of the error span [1] (see also the cor-
rections and additions of Monaco et al. [2]). In [3], Swaszek
et al. simplified the model of [1] such that the mean and the
variance of the delay until resynchronization can be obtained
via the inversion and multiplication of dimension n−1 square
matrices of constants. In [4], Zhou et al. derived a simple ex-
pression for the mean error propagation length (MEPL) and
the variance of error propagation length (VEPL) by making
use of the summation of semi-infinite series.

In the above methods a common assumption is that the
transmission fault is a single inversion error [1, 3, 4]. Never-
theless, we favor a more general analysis that multiple errors,

This work was supported by the Innovation and Technology Commis-
sion of the Hong Kong Special Administrative Region, China (project no.
ITS/122/03 and project no. GHP/033/05

or comparably high error rates, are taken into consideration.
In [5], Takishima et al. presented a formula to compute the
average number of codewords received until synchronization
is recovered for a BSC model with given crossover proba-
bility. It should be noted, however, that their results contain
an unknown random variable and the expressions are equiva-
lent to that of the single inversion error case, only with differ-
ent definition of the transition matrix (details will be reported
elsewhere). In this paper, we consider that the bit stream pro-
duced by VLC is transmitted over BSC. Simple expressions
for the exact mean symbol error rate (MSER) and the exact
variance of symbol error rate (VSER) for any crossover prob-
ability pe are presented. We also prove that the MEPL derived
for single inversion error case is a scaled value of MSER when
pe tends to zero. Comparisons with simulations demonstrate
the accuracy of the MSER and VSER expressions.

The rest of this paper is organized as follows. Section
II introduces the preliminary notions that we use in the se-
quel. Section III is the method for calculating the MSER and
VSER. In section IV, we show the comparisons with simula-
tions. Conclusions are briefly stated in the last section.

2. PRELIMINARY NOTATIONS

Let the source alphabet beA = {a1, a2, · · · , aN}, and let the
probability mass function (PMF) of this source be p(a1), p(a2),
· · · , p(aN ). The source is encoded by a binary prefix code
C = {c1, c2, · · · , cN}, where ci is the codeword of ai. Let

C∗ �
∞⋃

n=0

Cn

where Cn denotes the set of all sequences obtained by con-
catenating n codewords of C. We call the elements in C∗ sen-
tences.

Given a code C, we define Lmax = max{l(c)|c ∈ C},
where l(c) is the length of c, and length vector L = (L1, L2,
· · · , LLmax), where Li is the number of codewords with length
i. Let
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Table 1. Five-character source
Symbol Probability Code

A 0.4 00
B 0.2 01
C 0.2 10
D 0.1 110
E 0.1 111

Θ∗ �
⋃

n:Ln>0

{0, 1}n

be the set of all possible received codewords when C is trans-
mitted over BSC.

A square non-negative matrix T is said to be primitive if
there exists a positive integer k such that Tk > 0, where 0
denotes the matrix with all zero entries.

For a square matrix T = {tij}n×n, suppose that there
exists a real or complex number λ such that λu′ = u′T,
λv = Tv, for some vector u and v, where ”′” stands for
transpose. Then λ is called an eigenvalue of T, and u (v,
respectively) is called a left (right) eigenvector of T. The
largest eigenvalue λ in magnitude of a primitive matrix is
called the Perron-Frobenius(PF) eigenvalue, and according
to Perron-Frobenius Theorem, λ is a real positive number [6].
The associated left and right eigenvectors u and v, respec-
tively, are called PF left and PF right eigenvectors if u and
v are positive componentwise and u′1n = u′ v = 1, where
1n = (1, 1, · · · , 1︸ ︷︷ ︸

n

)′ [6].

3. CALCULATION OF MSER AND VSER

3.1. Error Recovery and Extended Transition Matrix

To illustrate the error recovery process of VLC transmitted
over BSC, let us first see the following example.

Example 1: Consider the encoding and decoding proce-
dure shown in Fig. 1, where the symbols are encoded by the
code given in Table 1. The bit inversion errors are underlined.

From this example, we find that there are three possi-
ble cases when the decoder parses a codeword received from
BSC.

1) The codeword is correctly decoded 1. In this case, the
state after parsing is called synchronization state without er-
ror, denoted by SY N1;

1As usual, the ’correctly decoded’ means that the decoded symbol is ex-
actly the same as the transmitted one, and all the received bits are consumed.
Even though, appended with some remained bits, the received codeword may
be decoded as a correct symbol concatenated with a sentence or a string of
undecodable bits (see the first decoded symbol in desyn period 3 of Fig. 1),
we still do not treat this case as correct decoding. Besides, in this paper, we
only consider the synchronization in Levenshtein sense [7].

2) The codeword is incorrectly decoded, but all the re-
ceived bits are consumed. In this case, the state after parsing
is called synchronization state with error, denoted by SY N2;

3) The codeword is incorrectly decoded, but not all re-
ceived bits are consumed. The remained undecodable bits
will match one of the internal nodes of the binary tree corre-
sponding to the VLC. Since these bits will influence the con-
sequent decoding, in this case, we call the state after parsing
Error State i (ESi), where i is the index of the internal node
that the remained bits match.

The total error propagation length T is defined as the total
number of symbols decoded in all desynchronization periods
(in example 1, T = 9).

The set of states can then be written as

S = {ES1, ES2, · · · , ESM , SY N2, SY N1} (1)

where M = N − 2 is the number of internal nodes and N
is the alphabet size. Every element in S is associated with
a string of bits, specifically, ESi is associated with the bit
representation of the ith internal node, and SY N1 and SY N2

are associated with an empty string.
As usual, we assume that the source data are generated

randomly according to the PMF. Since the bit errors may oc-
cur anywhere in the bit stream with equal probability, the se-
quence of states forms a Markov chain. Let πij (1 ≤ i, j ≤
N ) be the transition probability from state i to j. Let

Ωθ(i, j) = {θ ∈ Θ∗ : ∃c∗ ∈ C∗such that Siθ = c∗Sj} (2)

Then,

πij =
∑

(θ,k): θ∈Ωθ(i,j), l(ck)=l(θ)

{
p(ak)pdH(θ,ck)

e ×

(1− pe)l(ck)−dH(θ,ck)
}

(3)

where pe is the crossover probability of BSC, and dH stands
for the Hamming distance.

It should be noticed that the extended transition matrix
Π = {πij}N×N includes all the error states and two types of
synchronization state, which is different from the error state
transition matrix used in [1, 4]. Concerning the extended tran-
sition matrix, we present two Lemmas which will be used in
the next sections (proof will be reported elsewhere).

Lemma 1: Suppose Π = {πij}N×N is an extended tran-
sition matrix. Then,

lim
k→∞

Πk = vu′ = 1Nu′ (4)

where u and v are, respectively, the PF left and PF right
eigenvectors associated with Π.
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A D

100111111000

BECBCCBE

desyn period
1

Encoded data 01111100110

Received data 100111101000 11111110010

Decoded symbol DDBBA EEAC

State after
parsing

ES2ES3ES1SYN1 ES3ES3

desyn period
2

desyn period
3

C

10

10

D

SYN2ES2

Input symbol

SYN2 SYN1 SYN2

Fig. 1. The synchronization recovery process for the code shown in Table 1. The vertical lines indicate the boundary of correct
code sequence. ES1, ES2 and ES3, respectively, correspond to ’0’, ’1’ and ’11’.

Lemma 2: Given an extended error state transition matrix
Π = {πij}N×N , suppose u = (u1, u2, · · · , uN)′ is the PF
left eigenvector, and s1 = (π1N , π2N , · · · , πNN )′. Then,

u′s1 = uN (5)

3.2. Calculation of MSER and VSER

Let T (n) be the total error propagation length when the input
symbol length is n. MSER is then defined as

μ = lim
n→∞

MT (n)
n

(6)

where MT (n) stands for the mean value of T (n), and the
mean value is averaged over all possible source data and all
possible bit error positions with respect to the source distribu-
tion and the distribution of the bit error occurrence.

The VSER is accordingly defined as:

σ2 = lim
n→∞

σ2
T (n)
n2

(7)

where σ2
T (n) denotes the variance of T (n).

Theorem 1: The MSER for a VLC when the source is
memoryless and the transmission channel is BSC, is given by

μ = 1− uN (8)

where uN is the last component of the PF left eigenvector u
associated with the extended transition matrix Π.

Proof: Let pi(n) be the probability of ending up with state
i after parsing the nth codewords. From the extended tran-
sition matrix we have p(n) = p(n − 1)Π, where p(j) =
(p1(j), p2(j), · · · , pN (j)). We may also write this as p(n) =
p(1)Πn−1.

As T (n) is a non-decreasing function with respect to the
input symbol length n, we have

T (n + 1) = T (n) + Δ(n), Δ(n) ≥ 0 (9)

From the transition process, we can find that only when
the state after parsing (n + 1)th codeword is SY N1, Δ(n) =

0, otherwise, Δ(n) = 1. Hence, we can obtain the probability
mass function of Δ(n){

Pr(Δ(n) = 0) = p(n)s1

Pr(Δ(n) = 1) = 1− p(n)s1
(10)

where s1 = (π1N , π2N , · · · , πNN )′ is the last column of Π.
Taking expectations on Eq. 9, we have

⎧⎪⎨
⎪⎩

MT (n) = MT (n− 1) + (1 − p(n− 1)s1)
...

MT (2) = MT (1) + (1− p(1)s1)
(11)

Adding these equations together, we obtain

MT (n) = n− 1 + MT (1)− p(1)(
n−2∑
i=0

Πi)s1 (12)

It follows that

μ = lim
n→∞

MT (n)
n

= 1− p(1)( lim
n→∞

1
n

n−2∑
i=0

Πi)s1

(a)
= 1− p(1)1Nu′s1

(b)
= 1− u′s1

(c)
= 1− uN (13)

where (a) follows from Lemma1, (b) holds as all the proba-
bilities sums up to unity, and (c) follows from Lemma 2. �

Lemma 3: The following limiting equality holds

lim
n→∞

Cov(T (n), Δ(n))
n

= 0 (14)

Theorem 2: The VSER for a VLC when the source is
memoryless and the transmission channel is BSC, is given
by

III  643



σ2 = 0 (15)

Proof: From Eq.9, we have

σ2
T (n + 1) = σ2

T (n) + σ2
Δ(n) + 2Cov(Δ(n), T (n)) (16)

By using a similar technique as shown in Eq. 11, we can
obtain

σ2
T (n) = σ2

T (1) + p(1)
n−2∑
i=0

Πis1 −
n−2∑
i=0

(p(1)Πis1)2

+ 2
n−1∑
i=1

Cov(Δ(i), T (i)) (17)

Then

lim
n→∞

σ2
T (n)
n2

= lim
n→∞

p(1)
∑n−2

i=0 Πis1

n2

− lim
n→∞

∑n−2
i=0 (p(1)Πis1)2

n2

+ 2 lim
n→∞

∑n−1
i=1 Cov(Δ(i), T (i))

n2

(a)
= lim

n→∞
uN − u2

N

n
(18)

= 0 (19)

where (a) follows from Lemma 1, 2 and 3. �
In the next Theorem, we establish a relationship between

the MSER derived above and the MEPL obtained for single
inversion error case [1, 3, 4].

Theorem 3: Let μs be the MEPL for single inversion error
case. Then

lim
pe→0

μ

peLX(C)
= μs (20)

where pe is the crossover probability of BSC.

4. EXPERIMENT RESULTS

In this section, taking the example of the five-character source
shown in Table 1, we present comparisons of the theoretical
results of MSER and VSER with the experimental results. By
using Theorem 1, we can calculate the exact value of MSER
with respect to pe

μ =
4p6

e − 5p5
e − 86p4

e + 42p3
e + 284p2

e + 471pe

5p4
e − 20p3

e + 190p2
e + 480pe + 55

(21)

In Fig. 2a, the lines are obtained from Eq. 21 and the dots
are obtained through experiments averaging over 104 sam-
ples. It can be seen that the experimental results match the
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Fig. 2. (a)The MSER v.s. the crossover probability pe (b)
VSER v.s. input length n.

theoretical results very well. In Fig. 2b, we find that VSER
tends to zero as the input length n goes to infinity. In addition,
when the input length n is large, the decay rate of the VSER is
almost proportional to 1/n, which is consistent with Eq. 18.

5. CONCLUSIONS

In this paper, we extend the analysis of the error recovery
performance of VLCs to a BSC scenario. Very simple ex-
pressions for MSER and VSER are given. We also prove
that MEPL for single inversion error case is a scaled value
of MSER as the crossover probability pe tends to zero.
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