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ABSTRACT

Orthogonal random beamforming (ORB) has recently attracted sig-
ni cant interest because of its ability to exploit multi-user diversity
and spatial multiplexing gains by exclusively using partial chan-
nel state information (CSI). In this paper, we explore the impact of
CSI quantization on the performance of ORB. By resorting to a dy-
namic programming formulation, we identify the optimal (i.e. pdf-
matched) quantizer for which the sum-rate distortion is minimized.
This is a cross-layer approach in the sense that the optimal quan-
tizer (physical layer) actually depends on other layers’ parameters
such as the number of admitted users (link layer). Performance is
assessed by means of computer simulations and compared with that
of a uniform quantizer.

Index Terms: multi-user diversity, scheduling, quantization, ran-
dom beamforming.

1. INTRODUCTION

The exploitation of multi-user diversity (MUD) [1] relies on the as-
sumption that different users in a wireless multi-user system experi-
ence independent fading processes. In those circumstances, the cell
throughput in the downlink of a Single-Input Single-Output (SISO)
multi-user system can be maximized by scheduling in each time slot
the user with the most favorable channel conditions [2]. To do so,
only partial channel state information, namely SNRs, must be esti-
mated and, in the case of FDD systems, be reported by the terminals
to the Base Station (BS). In a context of Multiple-Input Multiple-
Output (MIMO) Broadcast Channels, Dirty Paper Coding (DPC) is
known to be the capacity-achieving strategy [3]. However, DPC is
computationally intensive and requires full channel state information
at the transmitter (CSIT). The computational complexity of Trans-
mit Zero-Forcing (TxZF) [4] beamforming is far more affordable
but, still, there is a need for full CSIT. Orthogonal random beam-
forming (ORB) schemes [5], instead, merely require partial CSIT,
mostly SINR measurements for each transmit beam. Hence, ORB
has emerged as a viable alternative to DPC and TxZF, in particular
in the asymptotic case of a high number of users where the sum-rate
exhibits the same growth rate as TxZF and DPC.

Since CSI (either partial or full) must be quantized before its
transmission over a feedback channel, a number of authors have an-
alyzed the impact of quantization on the exploitation of MUD. In
[6], for instance, the authors found that in a SISO context most of
the MUD gain can still be extracted when the measured SNRs are
quantized with very few bits. In a MIMO context, we analyzed in [7]
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the impact of CSI quantization on the throughput and the sum-rate
of ORB beamforming. The limiting case of one-bit quantizers de-
serves some attention as well. In [8], the authors designed a one-bit
quantizer in such a way that sum-rate of the quantized ORB system
exhibits the same growth rate as with analog CSI.

In this paper, we complement the work in [6] by (1) extending
the study to encompass ORB (i.e. in a MIMO setting); (2) identi-
fying the optimal set of quantization thresholds and, (3) comparing
the performance of such optimal quantizer with that of a uniform
one. We also go one step beyond [7] and move from a heuristic
quantization law to the optimal one, being this de ned by a set of
pdf-matched quantization intervals. Since this problem cannot be
solved analytically we must resort to a numerical solution. In par-
ticular, we adopt the dynamic programming formulation presented
in [9] which, unlike other less sophisticated algorithms [10] possi-
bly suffering from convergence to local minima, can always nd the
optimal quantizer.

2. SIGNAL MODEL

Consider the downlink of a wireless system with one Base Station
(BS) equipped with M antennas, and K single-antenna terminals.
In order to serve multiple users, we generate a pre-coding matrix
W = [w1,w2, ...,wM ][5], the columns of which, wi ∈ C

M×1,
i = 1..M , are isotropically-distributed random orthonormal vectors
[11]. Each of those vectors is then used to transmit data to the users
experiencing the highest SINRs. The received signal at the k-th ter-
minal can be written as:

rk = h
T
kWs+ nk (1)

where in the above expression the time index has been dropped for
the ease of notation, hk ∈ C

M×1 is the channel vector gain be-
tween the BS and the k-th terminal hk ∼ CN (0, IM ) (independent
Rayleigh fading), s ∈ C

M×1 is the symbol vector, and nk ∈ C

denotes additive Gaussian noise (AWGN) with zero mean and vari-
ance σ2. The active users in the system are assumed to undergo in-
dependent Rayleigh fading processes as well. Further, we consider
block-fading, that is, the channel response remains constant during
one time-slot and then it abruptly changes to a new independent re-
alization.

Concerning CSI, we assume perfect knowledge at the terminals
and the availability of a low-rate error- and delay-free feedback chan-
nel to convey partial CSI to the transmitter. Finally, the total trans-
mit power, Pt, is constant and evenly distributed among the active
beams, i.e., E{sHs} = Pt and, hence, we can de ne ρ = Pt

σ2
as the

average SNR.
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3. SUM-RATE WITH ANALOG FEEDBACK

According to the signal model of the previous section, the received
signal for user k when using beamformer i can be re-written from
(1) as:

rk,i = h
T
kwisi +

M�
j=1
j �=i

hTkwjsj + nk (2)

where sj stands for the symbol transmitted with beam j. The last
two terms in the above expression account for the interference-plus-
noise contribution and, hence, the corresponding SINR measured at
the terminal reads:

γk,i =
|hTkwi|2

M/ρ+
�M
j=1
j �=i

|hTkwj |2
=

z

M/ρ+ y
(3)

Since we assume that all users experience i.i.d Rayleigh fading and
the beamformers are orthonormal to each other, the two random
variables z and y are independent chi-square distributed: z ∼ χ22
and y ∼ χ22M−2 [5]. Bearing this in mind, the cumulative density
function (CDF) and the probability density function (pdf) of the pre-
scheduling SINR (which, by symmetry, do not depend on subscripts
k or i) can be expressed as:

FSINR(γ) = 1− e
− γM

ρ

(1 + γ)M−1
(4)

fSINR(γ) =
e
− γM

ρ

(1 + γ)M

�
M

ρ
(1 + γ) +M − 1

�
(5)

The scheduler in the BS operates in a slot-by-slot basis following a
max-SINR (greedy) rule. That is, for beam i, the scheduler selects
the active user k∗i satisfying1:

k∗i = arg max
k=1..K

{γk,i} i = 1 . . .M

which experiences a post-scheduling SINR given by:

γ∗i = max
k=1..K

{γk,i} i = 1 . . .M

Again, the statistics of γ∗i do not depend on the beam index i and,
hence, it will be dropped in the sequel. Since all users experience
i.i.d Rayleigh fading, the CDF of the post-scheduling SINR can be
readily expressed as [5]:

FSINR∗(γ) = (FSINR(γ))
K =

�
1− e

− γM
ρ

(1 + γ)M−1

�K
(6)

and by differentiating the above expression the corresponding pdf
results:

fSINR∗(γ) = K
e
− γM

ρ

(1 + γ)M

�
M

ρ
(1 + γ) +M − 1

�

×
�
1− e

− γM
ρ

(1 + γ)M−1

�K−1

(7)

1We implicitly assume that a different user is scheduled on each beam
since the probability that one user achieves the highest SINR on more than
one beam is negligible whenK >> M [5].

Finally, one can readily express the sum-rate R in terms of the pdf
above as:

R ≈ Eγ∗

�
M�
i=1

log2

�
1 + max

1≤k≤K
γk,i

��

=MEγ∗

	
log2

�
1 + max

1≤k≤K
γk,i

�


=M

� ∞

0

log2 (1 + γ) fSINR∗(γ)dγ (8)

Throughout this section, we have unrealistically assumed that, in be-
ing transmitted over the feedback channel, the measured SINRs can
be represented with in nite precision (i.e. analog representation).
This shortcoming will be addressed in the next section where we
present the optimal quantization strategy.

4. OPTIMAL QUANTIZATION STRATEGIES

In a realistic scenario, the BS is constrained to schedule users on the
basis of a quantized version of the pre-scheduling SINRs, Q(γk,i).
Let Γd = {γd0 < γd1 < . . . < γdNq

} be the input decision levels
and let Γq = {γq0 < γq1 < . . . < γqNq−1} be the output represen-

tative levels of an Nq = 2Lq -level quantizer Q(·) which is de ned
as:

Q(γ) = γqj if γdj ≤ γ < γdj+1 . (9)

Hence, the (quantized) post-scheduling SINR on beam i becomes2:

max
k=1..K

{Q (γk,i)} i = 1 . . .M

or, equivalently, by exchanging themax and Q operators

Q
�
max
k=1..K

{γk,i}

= Q (γ∗i ) i = 1 . . .M

After all these manipulations, we conclude that the problem to solve
is that of identifying an optimum (i.e. pdf-matched) set of decision
and representative levels, such that the average distortion introduced
by the Nq-level quantizer:

DNq = Eγ∗ [e (γ
∗, Q(γ∗))]

=

N−1�
i=0

� γdi+1

γdi

e (γ, γqi) fSINR∗(γ)dγ (10)

is minimized, with e(·, ·) standing for an appropriate error weight-
ing function. Therefore, we are facing a cross-layer design in the
sense that the optimal quantizer in the physical layer is tightly cou-
pled with system-level parameters (introduced through fSINR∗ ), such
as the number of admitted users (K) or the number of antennas in
the base station. Clearly, the necessary conditions for an optimal
quantizer {Γ∗

d,Γ
∗
q} are given by

∂DNq

γdi
= 0 i = 1, . . . , Nq − 1

∂DNq

γqi
= 0 i = 0, . . . , Nq − 1 (11)

Unfortunately, the resulting equation set is in general non-linear and,
thus, extremely dif cult to solve. Alternatively, one can resort to a

2If more than one SINRs belong to the highest quantization interval, one
of them is selected at random.
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dynamic program formulation [9] and obtain a numerical solution.
As expressed in (10), the average distortion DNq depends explicitly
both on the Γd and Γq sets. However, as proved in [9], we can rst
determine the optimal Γd and then nd the optimal Γq , in such a
way that each γqi is determined from γdi and γdi+1 (notice that a
modi cation of any one γqi concerns only one integral term in the
sum (10)). In this context, we de ne two functions D1(α, β) and
Dn(α, β) as follows.
D1(α, β) is de ned as the minimum value of the distortion mea-

sure when just one output level is placed in (α, β), a subrange of
(γd0 , γdNq

). That is,

D1(α, β) � min
y

� β
α

e (γ, y) fSINR∗(γ)dγ (12)

Next, Dn(α, β) is de ned as the minimum distortion when n levels
are place in the range (α, β), where n ≥ 2. That is,

Dn(α, β) � min
γd1 ,...,γdn−1
γq0 ,...,γqn−1

(α<γd1 ...<γdn−1<β)

n−1�
i=0

� γdi+1

γdi

e (γ, γqi) fSINR∗(γ)dγ (13)

This expression can be rewritten in terms of (12) as

Dn(α, β) = min
γd1 ,...,γdn−1

(α<γd1 ...<γdn−1<β)

n−1�
i=0

D1(γdi , γdi+1) (14)

where γd0 = α and γdn = β. Notice that γdi and γqi denote the
interim search variables whereas their optimal counterparts will be
labeled with the subscript ∗.

The search algorithm consists of the following ve steps:

1. Initialization: Compute and store the values ofD1(α, β) for
all discrete α and β in (γd0 , γdNq

). To do so, we assume
Nq ,γd0 and γdNq

to be set in advance and, also, that the
range (γd0 , γdNq

) is divided into an appropriate number of
segments.

2. Insertion of decision levels: For each n from two to Nq ,
compute both

Dn(γd0 , γ) = min
α

γd0<α<γ

[Dn−1(γd0 , α) +D1(α, γ)]

and γdn(γd0 , γ), which denotes the optimum value of vari-
able α for which Dn(γd0 , γ) is minimized. Store all these
values. This is done for all discrete γ in (γd0 , γdNq

) and,
by doing so, one can identify the best point to insert an ad-
ditional decision level within (γd0 , γ) and, also, compute the
associated distortion.

3. Computation of the optimal decision levels: For each n
from Nq to two, set

γ∗dn−1 = γdn−1(γ
∗
d0 , γ

∗
dn) (15)

with γ∗dNq
= γdNq

and γ∗d0 = γd0 .

4. Computation of the optimal representative levels: For each
n from zero toNq − 1, compute γ∗qn so thatD1(γ

∗
dn , γ

∗
dn+1

)
is the minimum value as given in (12).

5. End of algorithm.

Clearly, this algorithm attains the absolutely optimal quantizer with-
out requiring differentiation of D with respect to either the decision
or representative levels.
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Fig. 1. Sum-rate vs. number of users with analog and quantized CSI.
Noise-limited scenario (ρ=0 dB).

4.1. Speci c considerations

In our discussions, the error weighting function e(γ, γqi) has been
left as a free parameter. Since the optimally-quantized SINRs should
minimize the sum-rate distortion (8), we de ne the error function as

e(γ, γqi) = log2(1 + γ)− log2(1 + γqi)

= log2

�
1 + γ

1 + γqi

�
(16)

Besides, some system-level restrictions apply to the optimal set of
representative levels Γq . Since, ultimately, the quantized SINRs will
be used to adjust the constellation size and the coding scheme at the
transmitter, one should make sure that such quantized versions are
never above the actual SINR value. Otherwise, the estimated data
rate (log2(1 + γqi )) would exceed that which can be reliably sup-
ported by channel (log2(1+ γq) and an outage would result. Hence,
we impose the representative level for each quantization interval to
be equal to its lower decision level:

γqi = γdi ; i = 0 . . . Nq − 1 (17)

This results in an increase of the overall distorsion but, interestingly,
it also considerably simpli es steps 1) and 4) of the algorithm.

5. COMPUTER SIMULATION RESULTS

We consider a system withK = 1 . . . 1000 active users and one BS
withM = 4 antennas. In Figs.1-2, we assess the performance of the
optimal quantizer and compare it with that of (1) a uniform quan-
tizer, and (2) a system where SINRs have analog precision which
constitutes an upper bound of performance. Results are given for a
varying number of quantization bits/intervals and both in noise- and
interference-limited scenarios (ρ = 0, 20 dB, respectively). In all
cases, we force the quantization intervals to cover 99% of the dy-
namic range of the SINRs, that is, we set γd0 = 0 and γdNq

in the
99% percentile.

First, we can observe that in both scenarios the performance ex-
hibited by the optimal quantizer with Lq = 3 bits is very close to
that of the analog system: 4.49

4.68
= 95% for the noise-limited case
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Fig. 2. Sum-rate vs. number of users with analog and quantized CSI.
Interference-limited scenario (ρ=20 dB).

and similar values in the interference-limited scenario (K = 1000).
In absolute terms, though, the gap between both curves is wider in
the second case because the dynamic range of the post-scheduling
SINR is higher there. In other words, the pdf gets wider for an in-
creasing ρ, (see (5)) and, accordingly, the quantization intervals are
wider too. With Lq = 1 quantization bits the system still manages
to retain up to 3.66

4.68
= 78% and 10.19

13.60
= 75% of the analog per-

formance in noise- and interference-limited scenarios, respectively
(K = 1000).

Besides, the pdf-matched quantizer clearly outperforms its uni-
form counterpart in all cases and scenarios. The performance loss
that the uniform quantizer suffers from is in general more severe in
the Lq = 1 bit case: up to 10−2

10
= 80% w.r.t. the optimal quantizer

for K = 1000 (interference-limited scenario). The fact that perfor-
mance relies on the value that the single decision level takes (recall
that γd0 and γdNq

are set in advance) makes it very sensitive with
respect to non-optimal designs. Still, the distance between the deci-
sion thresholds associated with the optimal and uniform quantizers
strongly depends on parameters such as ρ or K (since so does the
pdf of the post-scheduling SINR) and in some cases (e.g. ρ = 0,
K = 1000) the gap between both curves is relatively narrow. How-
ever, only the optimal quantizer can guarantee close-to-analog per-
formance in a general case.

When the number of quantization levels increases to Lq = 2, 3
bits, the loss of the uniform quantizer w.r.t the optimal one decreases.
Indeed, when then number of intervals is higher some of the quanti-
zation intervals derived with the uniform quantizer partially overlap
with the optimal ones, this making performance loss less severe.

Finally, in Fig.3 we analyze the impact of the number of quan-
tization levels for a longer series of Lq values. Interestingly, from
Lq = 4 bits on, the performance of the optimal quantizer is practi-
cally undistinguishable from that of the analog system, in particular
for the noise-limited scenario.

6. CONCLUSIONS

In this paper, we have analyzed the impact of CSI quantization on
the performance of orthogonal random beamforing. With as few as
3 or 4 bits, the optimal quantizer attains a sum-rate virtually identi-
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Fig. 3. Sum-rate vs. number of quantization bits. Top: ρ=0 dB.
Bottom: ρ=20 dB.

cal to that of the analog system. In this case, the performance loss
associated with the uniform quantizer is moderate. With one quanti-
zation bit, which is a case that recently has attracted lots of attention,
the optimal quantizer still retains on the order of 75% of the analog
sum-rate. In those conditions, however, the uniform quantizer often
suffers from substantial performance losses.
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