
DISTRIBUTED SCALAR QUANTIZERS FOR NOISY CHANNELS

Johannes Karlsson, Niklas Wernersson, and Mikael Skoglund

School of Electrical Engineering, Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden

ABSTRACT

Sensor nodes in wireless sensor networks should preferable
be both cheap and energy ef cient. To cope with these re-
quirements an algorithm for designing distributed scalar quan-
tizers optimized for noisy channels is proposed and evaluated.
Applying the algorithm results in locally optimal systems. It
is demonstrated that the correlation between the sources can
be used to reduce the quantization distortion when the chan-
nel is close to error-free. If, on the other hand, there are a lot
of disturbances on the channel the correlation can be used to
introduce protection against channel errors.

Index Terms— Multisensor systems, distributed estima-
tion, quantization, joint source–channel coding

1. INTRODUCTION

Wireless sensor networks (WSNs) are expected to play an
important role in tomorrow’s sensing and actuating systems.
One important property of sensor networks is that there may
be a high correlation between different sensor measurements
due to high spatial density of sensor nodes. This justi es
source coding of correlated sources, which has been analyzed
in for instance [1] where the Slepian–Wolf theorem is stated.
A practical solution for Slepian–Wolf coding termed DISCUS
was presented in [2], allowing the use of powerful codes such
as LDPC and Turbo codes in the context of distributed source
coding, see e.g. [3, 4]. These schemes can be extended to the
case of continuous sources, hence lossy coding, by adding a
quantizer before the Slepian–Wolf encoder. Even though both
LDPC and turbo codes have relatively low encoding complex-
ity, these schemes, together with the quantizer, will require
some data processing in the sensor nodes. This will therefore
counteract one of the desired design criteria in sensor network
design, namely low cost and energy ef cient sensor nodes.

An alternative is to design sensor nodes of very low com-
plexity. In this paper, this is accomplished by seeing the dis-
tributed source coding as a quantization problem. Similar ap-
proaches can be found in [5, 6], but whereas they consider the
CEO problem this paper is focused on estimating the values
of each of the individual sources. Furthermore, [5, 6] assume
perfect communication between the source encoders and the
decoder. Our work is targeted towards wireless sensor net-
works, therefore a non-ideal channel is introduced between

Fig. 1: System with two signals X1 and X2 that are encoded
separately but decoded jointly at a fusion center.

the source encoders and the decoder to make the system more
realistic. The related problem of distributed detection over
non-ideal channels has previously been studied in [7]. In what
follows, we propose a design algorithm that results in sensor
nodes operating on a sample by sample basis in a similar fash-
ion as the channel optimized scalar quantizer (COSQ) [8].

2. PROBLEM FORMULATION

The system that will be studied can be seen in Figure 1. Two
scalar signals X1 and X2 are encoded separately by the en-
coders q1 and q2. Each encoder outputs a codeword i1, or
i2, which is a vector of R bits. The bits representing the
codewords are transmitted over two binary symmetric chan-
nels (BSC) with equal crossover probability ε. The decoder
at the fusion center outputs estimates X̂1 and X̂2 based on the
received codewords j1 and j2. The data is modeled as

X1 = Y +N1 (1)

X2 = Y +N2 (2)

where Y , N1 and N2 are three independent zero-mean Gaus-
sian distributed random variables with variances σ2

Y , σ2
N1

and
σ2

N2
, respectively. We will further make the assumption σ2

N1
=

σ2
N2

= σ2
N . For measuring the correlation between X1 and

X2, the correlation-SNR is de ned as

CSNR = 10 log10

(
σ2

Y

σ2
N

)
. (3)

Hence, CSNR = −∞ dB means thatX1 andX2 are uncorre-
lated andCSNR =∞ dB means that they are fully correlated.

Given this system, the objective is to nd the optimal pair
of R bit scalar quantizers, q1 and q2, and the corresponding
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joint decoders, g1 and g2. As optimization criterion the sum
of the mean squared error (MSE) for the two signals is used

D = D1 +D2 = E[(X1 − X̂1)2] +E[(X2 − X̂2)2]. (4)

3. ANALYSIS

We will only consider the design of q1 and g1 since the prob-
lem is symmetric. Let N = 2R de ne the number of code-
words available for each encoder. The encoder q1 is a map-
ping from x1 ∈ R to a codeword i1 ∈ {1, 2, . . . , N}. To
de ne this mapping we let Ai1 be a set containing all points
x1 that are mapped to codeword i1. Hence,

x1 ∈ Ai1 ⇒ q1(x1) = i1 (5)

where i1 ∈ {1, 2, . . . , N}. Similarly, the decoder g1 is a map-
ping from a pair of received codewords (j1, j2) described as

x̂1 = g1(j1, j2) = rj1j2 (6)

where (j1, j2) ∈ {1, 2, . . . , N}2 andR = {r11, r12, . . . , rNN}
is the set of possible reconstruction points. With these de ni-
tions the distortionD1 can be written as

D1 =
∫

x1

fX1(x1)
N∑

j1=1

P (j1 | q1(x1))
N∑

i2=1

P (i2 |x1)

N∑
j2=1

P (j2 | i2)(x1 − g1(j1, j2))2 dx1 (7)

and D2 can be expressed as

D2 =
∫

x1

fX1(x1)
N∑

j1=1

P (j1 | q1(x1))
∫

x2

fX2(x2 |x1)

N∑
j2=1

P (j2 | q2(x2))(x2 − g2(j1, j2))2 dx2 dx1 (8)

where fX1(x1) and fX2(x2 |x1) are pdf:s. P (j1 | q1(x1)) is
the probability of receiving j1 given that q1(x1) is sent and
P (i2 |x1) is the probability that x2 is encoded to i2 given x1.

As in traditional Lloyd-Max training [9] we will optimize
the system in an iterative fashion. The optimal encoder q1 will
depend not only on the decoder g1 but also on the encoder q2
and the decoder g2. Similarly the optimal decoder g1 will
depend on both of the encoders q1 and q2. Because of these
interdependencies they will be updated in the following order:
q1, g1 and g2, q2 and nally g1 and g2 again.

3.1. Finding the Optimal Encoder

We want to design the optimal encoder q1 in the minimum
MSE (MMSE) sense, given a xed encoder q2 and xed de-
coders g1 and g2. Since fX1(x1) is non-negative, to minimize

(7) and (8) it is suf cient to minimize the MSE for each value
of x1. Hence, the objective is to, for each x1, nd i1 to mini-
mize

D(x1, i1) = D1(x1, i1) +D2(x1, i1)

= E[(x1 − X̂1)2 |x1, i1] +E[(X2 − X̂2)2 |x1, i1] (9)

where

D1(x1, i1) =
N∑

j1=1

P (j1 | i1)
N∑

i2=1

P (i2 |x1)

N∑
j2=1

P (j2 | i2)(x1 − g1(j1, j2))2 (10)

D2(x1, i1) =
N∑

j1=1

P (j1 | i1)
∫

x2

fX2(x2 |x1)

N∑
j2=1

P (j2 | q2(x2))(x2 − g2(j1, j2))2 dx2.

(11)

The set Ai1 can now be de ned as

Ai1 = {x1 : D(x1, i1) ≤ D(x1, ĩ1),∀ĩ1 �= i1}. (12)

In [8] a similar analysis is made in the case of a single
source. In that case the inequality corresponding to (12) was
shown to be linear in x1. This implied that the sets corre-
sponding to each encoder region must be intervals and ana-
lytical expressions for nding the endpoints of these intervals
were derived. However, (12) is not linear in x1 andAi1 will in
general not be an interval, as illustrated in Section 4. There-
fore, the setAi1 is designed according to (12) by numerically
evaluating the distortion when a large range of values of x1

are encoded to each of the available codewords.

3.2. Finding the Optimal Decoder

Finding the optimal decoder g1 is equivalent to computing the
best reconstruction points R = {r11, r12, . . . , rNN}. Keep-
ing the encoders xed it is a well known fact that the optimal
(MMSE) reconstruction point of x1 is given as

rj1j2 = E[x1 | j1, j2]. (13)

3.3. Design Algorithm

To nd encoders and decoders for a given error probability, ε,
and a given CSNR the following algorithm is proposed

1. Choose q1 and q2 to be two known initial encoders and
compute the optimal decoders g1 and g2.

2. Set the iteration index k = 0 and D(0) =∞.

3. Set k = k + 1.
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4. Find the optimal encoder q1 by using (12).

5. Find the optimal decoders g1 and g2 by using (13).

6. Find the optimal encoder q2 by using (12) (with x1 re-
placed with x2, i1 replaced with i2, etc.).

7. Find the optimal decoders g1 and g2 by using (13).

8. Evaluate the distortion D(k) for the system. If the rel-
ative improvement of D(k) compared to D(k−1) is less
than some threshold δ > 0 stop the iteration. Otherwise
go to Step 3.

Each iteration will decrease the distortion. As in the case of
the Lloyd-Max algorithm the training will result in a locally
optimal system, and not necessarily the global optimum.

3.3.1. Avoiding Poor Local Optima

In [8] it was found that a good locally optimal system could
be achieved by designing the encoder/decoder pair for a range
of values of ε, 0 ≤ ε ≤ εmax. This is done by, in steps of Δε,
rst stepping from 0 to εmax and then back from εmax to 0.

In each step the system is initialized with the system from the
previous value of ε. The new system obtained from the train-
ing algorithm is kept if it results in a lower distortion than
the previous system for this ε. The process of stepping back
and forth between 0 and εmax is repeated until no further im-
provements are made. The reason why this method improves
the systems is because it introduces a way for the algorithm
to break free from poor local optima.

The idea of stepping back and forth is incorporated in our
design algorithm in the following way. Decide the range of
values of ε and CSNR for which to design the system, for
example ε = 0, . . . , εmax and CSNR = −∞, . . . ,∞ dB. For
each value of CSNR step in the ε-direction, that is start at
ε = 0 and step to εmax and then back to ε = 0. In each point,
keep the system that results in the lowest distortion for that
point and use this system as initialization for the next value of
ε. After the stepping in the ε-direction is done, for each value
of ε, step in the CSNR-direction, that is from CSNR = ∞
dB to CSNR = −∞ dB and then back to CSNR = ∞ dB.
As before, for each point, keep the system that results in the
lowest distortion and use this system as initialization for the
next value of CSNR. This process of stepping back and forth
was repeated two times with an additional stepping in the ε-
direction in the end. Some of the bene ts of stepping back
and forth are that poor locally optimum systems are removed
to some extent and also that it reduces the importance of the
choice of initialization encoders.

4. NUMERICAL RESULTS

Systems with R = 2, 3, 4 bits have been designed and tested
for CSNR = −∞, 10, 20, 30,∞ dB and ε ∈ [0, 0.1]. The
performance of the systems is evaluated using the signal-to-
distortion ratio (SDR). Since there are two channels to take

into consideration, the SDR is de ned as

SDR = 10 log10

(
E[X2

1 ] +E[X
2
2 ]

E[(X1 − X̂1)2] +E[(X2 − X̂2)2]

)
.

(14)
As initial encoders we have used two traditional single source
Lloyd-Max optimized scalar quantizers with the folded binary
code [10] as initial codeword assignment.

In Figure 2 results are presented for the case where R =
3. When CSNR = −∞ dB the problem is reduced to two
independent COSQs each using 3 bits. When CSNR = ∞
dB, ideally, the systems should have the same performance as
a single COSQ with twice as many bits sinceX1 = X2 = Y .
Indeed, for the 2 bit systems (results not included) this is the
case for all values of ε. However, whenR = 3 bits this bound
is only reached for ε ≥ 0.001 and for R = 4 bits this bound
is reached only for ε ≥ 0.003.

    

Fig. 2: Graph showing the performance of a 3 bit system in
comparison to the COSQ (dashed) with 3 and 6 bits.

Let us take a deeper look at the 3 bit system for sources
with CSNR = 20 dB to see how the tradeoff between quanti-
zation distortion and robustness against channel errors works
in practice. For ε = 0 the SDR is about 6 dB higher than
for the COSQ [8]. To understand this we have to look at the
structure of the two encoders q1 and q2. As can be seen in
Figure 3(a) where ε = 0, some of the codewords are used for
more than one quantization region, for example the codeword
i2 = 5 is used for 3 separated intervals such that Ai2=5 ≈
(−2.3,−2.0] ∪ (−1.2,−0.9] ∪ (−0.2,−0.1]. With informa-
tion from only one of the channels it would not be possible to
distinguish between which of these different intervals x2 must
have belonged to. However, with help from i1 this can be
done because i1 = 7 is highly likely when x2 ∈ (−2.3,−2.0],
i1 ∈ {4, 5, 6} is highly likely when x2 ∈ (−1.2,−0.9] and so
on. Hence, i1 will indicate which of the separated intervals x2

belongs to. In this way the distributed coding is used to de-
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(a) ε = 0

(b) ε = 0.04

Fig. 3: Encoder structures for 3 bit systems with CSNR = 20
dB and ε = 0 in (a) and ε = 0.04 in (b). The small dots in
the background show a sample distribution of (X1, X2), the
dashed lines show the boundaries for the quantization regions
and the small crosses mark reconstruction points, (X̂1, X̂2).

crease the quantization distortion. Something to note is that
the sets of separated intervals are created by the design algo-
rithm despite the fact that the initial encoders are Lloyd-Max
quantizers where all sets, Ai1 and Ai2 , are single intervals.

When the same system is designed for ε = 0.04 the re-
sulting encoders get the structure shown in Figure 3(b). In
this case not even all available codewords are used by the en-
coders. Instead some codewords that would make the system
more sensitive to channel errors are removed by the design
algorithm. The removed codewords are those that are never
optimal according to (12).

5. CONCLUSIONS

A design algorithm for a joint source-channel code that works
on a sample by sample basis for correlated sources is pre-
sented. The resulting encoders use the same codeword for
several separated intervals so that the quantization distortion
is reduced when there is a high correlation between the sources
and the channel is close to error free. When there are more
disturbances on the channel the correlation is instead used for
protection against channel errors.

Depending on the correlation between the sources, differ-
ent gains are achieved in comparison to the case where the
two sources are encoded and decoded separately using chan-
nel optimized scalar quantization (COSQ) [8]. For the case
of CSNR = 10 dB and a binary symmetric channel with
crossover probability ε = 0.03 the gain is as much as 2.5
dB in comparison to the single source COSQ.
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