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ABSTRACT
This paper investigates the design of a system of predictive

vector quantizers for distributed sources with memory, in which

linear prediction is used to exploit the source memory, while

distributed quantization is used to exploit the correlation be-

tween sources. A training-based algorithm is proposed for

jointly designing the predictors, binning functions, and recon-

struction codebooks of the given system to match the intra-

and inter-source correlations. In order to demonstrate the ef-

fectiveness of the algorithm, experimental results obtained by

designing both scalar and vector quantizers for a set of dis-

tributed Gauss-Markov sources are presented. While the op-

timality of these designs is unknown, it is shown that they

convincingly outperform several other alternatives.

Index Terms- Distributed source coding, vector quantiza-
tion, predictive coding

1. INTRODUCTION

Recently, there has been a tremendous interest in distributed

source coding, due to its potential applications in emerging

sensor networks. A typical problem of interest is the separate

encoding and joint decoding of observations from a spatially

distributed set of correlated sources (sensors). It is known that

the loss of coding efficiency due to lack of communication

between sensors can be compensated for by a joint decoder

which exploits the inter-source redundancy [1].

The particular problem considered in this paper was first

studied in [2] for the case of two memoryless sources, where

the sources were modeled as noisy observations of some ran-

dom variable to be estimated at a central decoder. An infor-

mation theoretic achievable rate region of an optimal system

was obtained and the problem of designing a good system was

also considered. In particular, each distributed encoder was

implemented as a two stage encoder, in which the first stage

is an ordinary quantizer optimized for its input (i.e. a “pre-

quantizer”) and the second stage is a quantizer (operating on

the discrete output of the first stage) which exploits the inter-

source correlation to reduce the transmission bit-rate. The
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latter operation is generally referred to as binning [3]. In sub-
sequent research (e.g. [3]), efficient binning strategies based

on channel codes and their application to distributed quantizer

design have been considered.

The above mentioned work focuses on exploiting inter-

source correlation, but not the memory in individual sources.

In practice, predictive coding (e.g. DPCM) is widely used to
quantize sources with memory (e.g. speech). Therefore, de-

signing predictive quantizers for distributed coding is of great

interest. The predictive quantizer design in a distributed set-

ting poses an interesting optimization problem in which the

predictor coefficients must be chosen differently, compared to

an ordinary predictive coder for the given source. A method

for designing distributed scalar predictive quantizers is pre-

sented in [4]. However, that method requires the use of a

restricted class of distributed uniform quantizers, as well as

an exhaustive search to find the best predictor coefficients.

In contrast, this paper presents an algorithm for designing

predictive vector quantizers (PVQ) for distributed sources, by

generalizing the PVQ design algorithms of the form [5], [6].

The proposed algorithm iteratively improves an appropriately

chosen initial system based on a training set of source vectors.

Different to [4], the proposed method can be used to design

vector quantizers and the optimal predictor coefficients are

obtained as a part of the design algorithm, as opposed to us-

ing an exhaustive search over all admissible filters. In order

to simplify our preliminary study, we identify binning as a

problem of index assignment [7], and conveniently use com-

binatorial optimization to obtain good binning functions. This

approach can be useful in optimizing distributed quantizers in

general as well. The possibility exists for incorporating chan-

nel coding-based binning methods [3] within the proposed al-

gorithm as well.

2. SYSTEM DESCRIPTION

The system considered in this paper is shown in Fig.1. It

encodes two statistically dependent sources represented by

discrete-time stationary ergodic random processes {Xn} and
{Yn} where the d-dimensional random vectors Xn ∈ R

d

and Yn ∈ Rd have a joint probability density function (pdf)
fXY(xn,yn) (we use upper case to denote random variables
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and lower case to denote realizations). Each source is quan-

tized by its own predictive encoder, where Un and Vn are

the respective predictions errors. It is assumed that the en-

coders cannot communicate with each other. However, on the

receiver side, the prediction errors Û′

n and V̂
′

n are jointly de-

coded.

In general, there will be a statistical dependence between

Un andVn, characterized by the joint pdf fUV(un,vn). Let
us definemore precisely the encoder and decoder forXn (def-

inition of the system for Yn follows from symmetry). The

prediction errorUn = Xn− X̃n, where X̃n is the prediction

generated by a vector linear predictor βx, is quantized by an
Nu level vector quantizer εu whose output is an integer In ∈
{1, . . . , Nu}. As usual in predictive coding, the prediction

is based on a locally reconstructed signal X̂n = X̃n + Ûn,

where Ûn is produced by the local decoder δu based on In.
The transmission of In requires a rate of log2Nu bits/vector.

In order to achieve a rate reduction by exploiting the correla-

tion betweenUn andVn, In is mapped to I
′

n = φu(In) prior
to transmission, where I ′n ∈ {1, . . . ,Mu} and Mu ≤ Nu.

The “binning” function φu is chosen based on fUV(un,vn).
As a result of binning, the required transmission rate reduces

to log2Mu bits/vector.

We measure the performance of the system by it’s mean

square error (MSE)

D = E‖Xn − X̂′

n‖2 +E‖Yn − Ŷ′

n‖2, (1)

and define the optimal system as a one that achieves the min-

imum MSE (MMSE) for the given joint pdf fXY(xn,yn).
Our goal is to design a system optimal for the empirical dis-

tribution of a realization (i.e. a training set) drawn from this

joint density. In this case, we replace (1) by the corresponding

sample average based on the training set.

3. DESIGN ALGORITHM

In order to motivate a design strategy, it is worth emphasiz-

ing that there is a compromise between distributed coding and

predictive coding effected by the choice of the linear predic-

tor. On the one hand, for distributed coding to be effective,

there must be sufficient correlation between prediction errors

Un and Vn. On the other hand, for predictive coding of in-

dividual sequences {Xn} and {Yn} to be effective, the tem-
poral correlation in the prediction error sequences {Un} and
{Vn} must be low (in single source PVQ, one strives to ren-

der prediction error a white process). The point is that the

predictors affect both intra-sequence and inter-sequence cor-

relations. Therefore, for a given fXY(xn,yn), the optimal
predictors are different to those in a single source PVQ (i.e.

prediction error whitening is no longer the optimal strategy).

The most successful approach to practical PVQ design is

the iterative system improvement [8], [5], [6]. The basic phi-

losophy behind this approach is as follows. Given a source

training set, one finds the input sequence to each component

in some initial system. Then, based on an appropriate distor-

tion measure, each component is optimized for its input train-

ing set with the other components fixed, ignoring the effect of

feedback. The system is then replaced by a new system with

updated components, the input sequence to each component

is recomputed in closed-loop, and the above component up-

dates are repeated iteratively, until the average distortion of

the system is sufficiently low. Our goal is to develop a simi-

lar approach to design a distributed PVQ. As such, we divide

the system into there parts and attempt to optimize each for a

fixed input as follows.

1) Distributed vector quantizers for prediction errors and
the joint decoder: Assume fixed inputs {Un}, {Vn}. We
first design the vector quantizers εu and εv for their respec-
tive inputs using the generalized Lloyd algorithm [8]. Then,

keeping these pre-quantizers fixed, we optimize the binning

functions φu and φv and the joint decoder, as described in
Sec. 4.

2) Local decoders δu and δv: Assume fixed inputs {In},
{Jn}. If the joint decoding is very effective, then (In, Jn)
can be correctly determined from (I ′n, J

′

n)with probability al-
most one. In that case, the quantized prediction errors recon-

structed by the local decoders and those reconstructed by the

joint decoder will be nearly identical. However, if the correla-

tion between {Un} and {Vn} is not high enough, there will
be a mismatch between the prediction errors in the encoders

and the joint decoder. In order to effect a graceful degradation

of this mismatch error with decreasing correlation between

the two sources, we choose each local decoder so as to min-

imize the mean square mismatch errors E‖Ûn − Û′

n‖2 and
E‖V̂n − V̂′

n‖2 respectively. For given {In} and {Jn}, local
decoders which achieve this condition are given by

δ∗u(in) = E{Û′

n|in},
δ∗v(jn) = E{V̂′

n|jn}, (2)

Given a joint decoder, these codebooks can be estimated.

3) Vector prediction filters βx and βy: Assuming L-th order
linear prediction, the prediction forXn at the receiver can be

written as

X̃′

n =

L∑
k=1

AkX̂
′

n−k, (3)

whereA1, . . . ,AL are the d× d coefficient matrices. Let the
corresponding coefficient matrices for Ỹ′

n be B1, . . . ,BL.
Also let X̃′′

n = Xn− Û′

n and Ỹ
′′

n = Yn− V̂′

n, which are the

ideal predictions desired at the receiver. Then, the distortion

in (1) can be expressed as

E‖X̃′′

n −
L∑
k=1

AkX̂
′

n−k‖2 +E‖Ỹ′′

n −
L∑
k=1

BkŶ
′

n−k‖2 (4)

Given a training set of input-output pairs (X̂′

n, X̃
′′

n) of the
filter βx, the problem at hand is to find the filter coefficients
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A1, . . . ,AL whichminimizes the first expectation in (4). Also

a similar problem can be formulated for βy with respect to
the second expectation in (4). The solution to these two lin-

ear estimation problems can be obtained by solving a set of

vector-form Yule-Walker equations. We omit the details for

brevity, but refer to Sec. 13.3 of [8].

The design algorithm repeatedly applies the above three

steps, starting from some initial system. After each iteration

the input sequence to each component is recomputed based

on the new design. The iterations are stopped when the av-

erage distortion of the resulting the design does not change

significantly between successive iterations.

4. OPTIMIZATION OF BINNING FUNCTIONS

In this section, we consider the problem of choosing the bin-

ning functions φu and φv (integer-to-integer quantizers) so
thatE‖U−Û′‖2+E‖V−V̂′‖2, is minimized (without loss
of generality time subscript is omitted). It is straight forward

to show that (details omitted)

E‖U− Û′‖2 = DI,J +

Nu∑
i=1

Nv∑
j=1

‖g(u)i,j − û′i′,j′‖2Pi,j (5)

where û′j′,j′ is the codebook used by the joint decoder (at

receiver) with i′ = φu(i) and j
′ = φv(j), DI,J is the mean

square quantization error if the joint decoding ofUwere based

on i, j (as opposed to i′, j′), using the MMSE optimal code-

book g
(u)
i,j = E{U|i, j}, and Pi,j is the joint probability of

the index pair (i, j). It is easy to see that the MMSE opti-

mal joint decoder codebook based on i′, j′ is simply û′i′,j′ =
E{U|i′, j′}. Now, notice that the second term in (5) repre-

sents the additional MSE incurred (in coding U) by the rate

reduction due to binning. Considering both U and V, the

total additional MSE due to binning is

Nu∑
i=1

Nv∑
j=1

[
‖g(u)i,j − û′i′,j′‖2 + ‖g(v)i,j − v̂′i′,j′‖2

]
Pi,j . (6)

Thus, we have a combinatorial optimization problem of min-

imizing (6), with respect to the two integers-to-integer map-

pings φu and φv . To solve this problem we can adapt the

simulated annealing-based index assignment optimization al-

gorithm given in [7]. In addition to using the cost function (6),

the main difference here is the way in which the solution vec-

tor is represented and the random perturbations are effected.

We describe this.

Binning functions φu and φv can be viewed as some as-
signment of Nu integers to a set ofMu bins and Nv integers

toMv bins respectively. The perturbation of a solution in sim-

ulated annealing can be effected by moving an element from

a randomly chosen bin to another randomly chosen bin. Note

that the solution space can be significantly reduced by consid-

ering that, in a valid solution, every bin must contain at least

one element. With this formulation, the index assignment al-

gorithm in [7] can be easily adapted to optimizing binning

functions in distributed quantization.

5. SIMULATION RESULTS AND DISCUSSION

In order to demonstrate the effectiveness of the algorithm pro-

posed above, we use this algorithm to design distributed quan-

tizers for two jointly Gaussian random variables Xn and Yn
with correlation coefficient γ = E{XnYn}/σxσy , whereEXn

= EYn = 0 and σ2x = EX2
n, σ

2
y = EY 2

n . Furthermore, the

sequences {Xn} and {Yn} are two first-order Gauss-Markov
processes defined by

Xn = ρ1Xn−1 +Rn

Yn = ρ2Yn−1 + Sn (7)

where Rn and Sn are independent zero-mean Gaussian iid

sequences, and |ρ1|, |ρ2| < 1. In our experiments, we set

σ2x = σ2y = 1.0 (i.e. average signal power is 1.0). In the
following, the performance of a quantizer system is measured

by the average distortion (1), expressed as a signal-to-noise

ratio (SNR).

First, we consider the design of predictive scalar quantiz-

ers (also known as DPCM) with first order predictors. Each

source is quantized at the rate of 3 bits/sample [the rate of

each pre-quantizer (εu and εv) was chosen to be 6 bits/sample].
In order to initialize the design algorithm, we chose purely

source-optimized quantizers designed as in [5]. In our first

set of experiments, we considered two sources with inter-

source correlation γ = 0.98. The proposed algorithm was

used to design distributed predictive quantizers for different

values of intra-source correlation, ρ1 and ρ2 (for simplicity,
let ρ1 = ρ2). The performance of these designs are compared
with several other alternatives in Fig. 2. Here, distributed
non-predictive refers to memoryless distributed quantizers de-
signed by simulated annealing as described in Sec. 4, Non-
distributed predictive refers to ordinary predictive quantizers
designed for each source as in [5], and Non-distributed non-
predictive refers to memoryless, Lloyd-max quantizers de-
signed for each source [8]. The values shown along the curves

in parenthesis are the predictor coefficients found by the de-

sign algorithm (due to symmetry, the predictor coefficients

for two sources are nearly identical ). These results reveal

that, the proposed distributed predictive quantizers provide

the “best of both worlds”. On the one hand, the performance

of the distribute predictive quantizer approaches that of the in-

dependent predictive quantizer when the intra-source correla-

tion is high. At this extreme the gain due to predictive coding

dominates the overall performance. On the other hand, the

performance of the distribute predictive quantizer approaches

that of the memoryless distributed quantizer when the intra-

source correlation becomes low (i.e. the gain due to predictive

coding becomes negligible). Between these extremes, the dis-

tributed predictive quantizers yield a substantial performance

III  631



��
��

��
��

��
��

��
��

��
��

��
��

�

�

�
�

�

�

�

� �

� �

�

�.

�

�

�

��
�

�

�

�
��

�

�

�

Joint
decoder

Vn

Xn

Yn
Jn J ′

n

X̂
′

n

X̃
′

n

φu

βx

Û
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Ỹn Ŷn V̂n

+βy

+

+

In I ′
n

Distributed
vector quantizer

Fig. 1. Proposed distributed PVQ system.
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Fig. 2. Performance comparison of distributed predictive

scalar quantizers with other alternatives at the rate of 3

bits/sample per source, 1st-order prediction, and γ = 0.98.
The number in parenthesis is the predictor coefficient.

gain over predictive-only and distributed-only quantizers, by

choosing the predictor coefficients, the binning functions, and

the joint codebooks to match the intra- and inter-source cor-

relations. We also observed similar results in a second set of

experiments in which the quantizers were designed for differ-

ent γ and fixed ρ1, ρ2.
We have also investigated the design of predictive vector

quantizers. In this case, we considered 2-dimensional vec-

tor quantization of the sames sources in (7) at the rate of 3

bits/vector (1.5 bits/sample), using 1st-order vector predic-

tors. Again, we performed a number of experiments which

confirmed the observationsmadewith scalar quantization above.

To save space, we summarize in Table 1 a comparison of SNR

performance for the case ρ1 = ρ2 = 0.9 and γ = 0.98. This
example clearly shows the difference between predictor ma-

trices of the distributed and non-distributed quantizers.

While it appears difficult to establish the optimality of the

designs obtained by the given algorithm (a problem common

to any predictive quantizer design in general, see [8] pp. 493),

System SNR (dB) Predictor Matrix
Distributed 16.35 0.47 0.13

Predictive 0.60 0.12

Non-distributed 14.02 0.81 0.00

Predictive 0.90 0.00

Distributed 14.43
Non-predictive
Non-distributed 10.78
Non-predictive

Table 1. Comparison of 2-dimensional distributed PVQ with

other alternatives for the case γ = 0.98 and ρ1 = ρ2 = 0.9.
The rate is 3 bits/vector. The ordering of predictor matrix A

is [x̃n+1 x̃n]
T = A[x̂n−1 x̂n−2]

T .

numerous experiments (also involving other source models)

indicated that this algorithm is a very effective way of design-

ing predictive VQ systems that exploit both intra- and inter-

source correlation of distributed sources. It is straightforward

to extend the algorithm to a set-up with many sources, such

as a sensor network. An interesting avenue of further work

is to incorporate well known channel coding based binning

methods [3] into the given optimization algorithm.
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