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ABSTRACT

This paper considers the high-rate performance of channel optimized
source coding for noisy discrete symmetric channels with random
index assignment. Specifically, with Mean Squared Error (MSE)
as the performance metric, an upper bound on the asymptotic (i.e.,
high-rate) distortion is derived by assuming a general structure on
the codebook. This structure enables extension of the analysis of the
channel optimized source quantizer to one with a singular point den-
sity: for channels with small errors, the point density that minimizes
the upper bound is continuous, while as the error rate increases, the
point density becomes singular. The extent of the singularity is also
characterized. The accuracy of the expressions obtained are verified
through Monte Carlo simulations.
Keywords: source coding, compression.

1. INTRODUCTION

It is well known that the performance of a source quantization scheme
can be very sensitive to errors introduced when the codepoint index
is transmitted over a noisy channel. For example, speech is typi-
cally compressed using a highly efficient vector quantization (VQ)
scheme prior to transmission over a noisy channel, and the resulting
indices could be very sensitive to errors in the channel over which
they are transmitted. Hence, the performance of VQ when the index
is sent over a noisy channel is pertinent to practical communication.

The effect of channel errors on VQ can be modeled as an in-
dex error, that is, the index i corresponding to the current source
instantiation is received as a possibly different index j. Classical
source coding has devoted much effort to the problem of source
compression for noisy channels, and two dominant approaches have
emerged. The first is channel-optimized VQ, i.e., to replace the dis-
tortion measure used for optimizing the quantizer with the expected
distortion over the noisy channel (e.g., [1]). The second approach
involves Index Assignment (IA), i.e., to design the quantizer with-
out considering channel errors and then map codewords to indices in
such a way that codewords resulting in small inter-codepoint distor-
tions are mapped to index pairs that correspond to channel symbols
with large transition probability and vice versa (e.g., [2]).

In this sequel to [3], a channel optimized approach based on
classical results from the source coding literature [4] - [7] is adopted
to derive new results for the performance of source coding with
Mean Squared Error (MSE) distortion for discrete symmetric chan-
nels with random IA. Random indexing results in a Simplex Error
Channel (SEC), i.e., a channel for which the probability of receiving
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an index j when an index i is sent only depends on whether or not i
and j are different. To analyze the performance, a general structure
is assumed for the codebook of quantized vectors, which leads to
an upper bound on the expected distortion with a channel-optimized
codebook. It is assumed that some fraction of the codepoints are
merged into the source centroid, while the remaining codepoints are
distinct, as a way of building a joint source-channel code. Optimiza-
tion of the extent of the singularity is also considered; and to the
best of the authors’ knowledge, this is the first time that the perfor-
mance of the source coding scheme with channel errors has been
extended to the class of singular point densities. Interesting results
and insights are obtained on the design and performance of channel-
optimized codebooks for a wide range of channel error rates. The
hope is that the results presented here would eventually be extended
to obtain insights into the design and analysis of joint source-channel
codes for many other scenarios.

2. PRELIMINARIES

Let x ∈ Dx ⊂ R
n be a random source with pdf fx(x), where Dx

is the domain of x. Without loss of generality, let the mean of the
source be at the origin, denoted 0. A VQ encoder is described by
N partition regions Ri, 1 ≤ i ≤ N that tile Dx. Associated with
each partition region Ri is a code-vector x̂i. Whenever x ∈ Ri,
the quantizer outputs index i, which is sent over a noisy channel. At
the receiver, the index is received as an index j with probability Pj|i,
upon which it outputs x̂j as its estimate of x. The distortion resulting

from representing x as x̂ is measured as d(x, x̂) � ‖x − x̂‖2.

It is well known that for any source, the Channel Optimized Vec-
tor Quantizer (COVQ) [1] satisfies two conditions: the weighted
nearest neighbor condition, and the weighted centroid condition.
Given the code book and a source instantiation x, the optimum quan-
tizer chooses the index i that minimizes the expected distortion after
accounting for possible channel errors. That is, denoting the ex-
pected distortion after the index is transmitted over the noisy channel
as dc(x, ŷi) �

PN
k=1 d(x, ŷk)Pk|i, the transmit optimized quan-

tizer selects the index i that minimizes dc(x, x̂i). Likewise, given
the quantization regions, the weighted centroid condition computes
x̂i as a weighted sum of the geometrical centroids of all the quantiza-
tion regions, with the weights determined by the a-posteriori channel
transition probabilities. It can be shown that the weighted centroid
condition yields the optimum code-point for any given a quantiza-
tion region in the sense of minimizing the expected distortion given
a particular received index, after accounting for possible channel er-
rors. The COVQ thus simultaneously satisfies the weighted nearest
neighbor condition and the weighted centroid condition.

In this paper, the channel is modeled as a discrete symmetric
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(a) noiseless channel
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(b) BSC with q = 0.02

2 1.5 1 0.5 0 0.5 1 1.5 2
2

1.5

1

0.5

0

0.5

1

1.5

2

(c) BSC with q = 0.05
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q = 0.1, dim = 2, N = 16

(d) BSC with q = 0.1

Fig. 1. VQ codepoints for N = 16 level quantization of an n = 2
dimensional i.i.d. standard Gaussian source. The codebooks were
generated using the generalized Lloyd algorithm in [1].

channel [8] with random IA, which leads to an SEC with transition
probability given by

Pj|i = ε(N) + (1 − Nε(N)) δ(i, j) (1)

where δ(i, j) = 1 when i = j and 0 otherwise; and 0 ≤ ε(N) ≤
1/(N − 1) is the probability that index i is received as a different
index j. From a practical perspective, it is reasonable to expect that
ε(N) < 1

N
, which ensures that Pi|i = max1≤j≤N Pj|i holds.

An example for the SEC is when the index is sent using orthog-
onal modulation over an AWGN channel. Another example is when
the channel is a binary symmetric channel (BSC) with bit cross-over
probability q and the assignment of the indices to the B = log2(N)
bit words is random. It can be shown that after averaging over all
possible index assignments, the probability of correct reception is

Pi|i = (1 − q)B , and thus ε(N) =
“
1 − (1 − q)B

”
/ (N − 1).

Detailed justification and motivation for the random IA assumption
can be found in [3]. Note that, in practical implementation, the ef-
fect of random IA can be achieved by employing different IAs (in a
pre-specified pseudo-random pattern) over time.

Fig. 1 shows the channel-optimized codepoints obtained using
the generalized Lloyd algorithm described in [1], for 16-level quan-
tization of a 2-dimensional i.i.d. Gaussian source, when the index is
mapped to a 4-bit symbol and sent over a Binary Symmetric Chan-
nel (BSC) with bit cross-over probability q. From the figure, it can
be seen that as the channel deteriorates, more and more codepoints
get merged at the origin, until, for a completely degenerate chan-
nel (i.e., one for which Pj|i = 1/N for all i and j), the codebook
contains just one distinct codepoint at the source centroid. This moti-
vates the structure assumed for the Channel Optimized Vector Quan-
tizer (COVQ) codebook in the sequel. In classical source coding,
when the channel is noiseless, it is known that the distribution of
codepoints often approximates a continuous point density. However,
when the channel has errors, the codepoints of the optimum code-
book initially shrink closer towards the centroid of the source distri-
bution, and eventually, some of the codepoints collapse together and
the point density becomes singular. This singular point density can
be thought of as the sum of a continuous point density and one or
more singular points (Dirac delta function).

Thus, of the total N code points, αN distinct points are drawn
from a continuous density (it is assumed that αN is large), while the
remaining (1 − α)N points are at the origin, where 0 ≤ α ≤ N−1

N
.

Note that α can itself be a function of N and the channel transition
probability, which then corresponds to tuning the quantizer to the
channel at each specific N . Under this assumption, the code book
can be represented as having αN + 1 points {x̂1, . . . , x̂αN ,0}, and
the equivalent index transition probability matrix Pj|i is given by the
(Nα + 1) × (Nα + 1) matrix

P =

2
66664

ε̃ ε . . . ε N(1 − α)ε

ε ε̃
. . . N(1 − α)ε

... ε̃
...

ε . . . ε 1 − αNε

3
77775 , (2)

where ε = ε(N) and ε̃ = 1 − (N − 1)ε(N). The above equivalent
index transition probability is no longer simplex, because the point
0 actually consists of N(1 − α) codepoints, and when the source
x lies in the quantization region for the point 0 (denoted R0), one
of the N(1 − α) indices corresponding to 0 is randomly picked and
sent across the channel.

3. PERFORMANCE ANALYSIS

In this section, the high-rate performance of VQ for an SEC is stated.
Due to the lengthy nature of the proof and space limitations, it is
omitted and the reader is referred to [9, 10] for details. The expected
distortion is obtained by taking a double expectation over the source
density and the channel transition probabilities as follows:

Ed =

NX
i,j=1

Pj|i

Z
x∈Ri

‖x − x̂j‖2fx(x)dx. (3)

For the result to follow, the standard high-rate approximations in
[4, 6], and the quantization cell approximation in [7] are employed.
Then, the expected distortion can be shown to be given by

Ed =

Z
x

Ed,xfx(x)dx (4)

where Ed,x, the expected distortion conditioned on the source in-
stantiation x, is

Ed ≈ Nε(N)σ2
x + ϕε(N)

Z
yT yλ(y)dy

+gnϕ− 2
n

Z
λ− 2

n (x)fx(x)dx. (5)

In the above, ϕ � αN+1 (note that 1 ≤ ϕ ≤ N ), gn � nκ
− 2

n
n /(n+

2), κn is the volume of an n-dimensional unit sphere, and σ2
x is the

source variance. Also, λ(x) is the fractional point density, defined
as follows. The specific point density [5] is given by

λϕ(x) � 1

ϕV (Ri)
, if x ∈ Ri, for i = 1, 2, . . . , ϕ; (6)

where V (Ri) is the volume of the region Ri. Then, from [6], when
ϕ is large, λϕ(x) asymptotically approximates a continuous non-
negative density function λ(x) having a unit integral. When n = 1
(scalar quantization) and ϕ = N (continuous point density), the
above expression reduces to similar expressions in [11, 12].

The high rate distortion expression in (5) is valid for any point
density as long as the regions Ri get small as N gets large and the
quantizer satisfies the nearest neighbor condition, i.e., it is not re-
stricted to the optimum point density. It can be seen that the overall
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distortion splits as the sum of the channel error-induced distortion
(the first two terms) and the source quantization-induced distortion
(the last term). The last term in (5) is the high-rate distortion re-
sult for an noiseless channel (i.e., when ε(N) = 0), and is therefore
minimized when ϕ = N and λ(x) = λconv(x), the conventional
point density given in [5]. Also, when ϕ = N , if ε(N) is pro-

portional to N−(n+2)/n, the terms are balanced, since the last term
varies with N as N−2/n. Note that the first term is independent of
both the point density and α, and thus the expected distortion with
the given codebook structure is lower-bounded by Nε(N)σ2

x. For a
noisy channel, it may be possible to reduce the overall distortion by
choosing a point density that has a smaller second moment than the
conventional point density, as that would lead to a reduction in the
second-moment term above. The above expression also shows the
effect of choosing different values of 0 ≤ α ≤ (N − 1)/N . Clearly,
when ε(N) = 0, α = (N − 1)/N is optimum, which corresponds
to employing a point density with no singularity at the origin. As the
channel gets worse, ε(N) gets larger, and therefore the second term
starts dominating the performance. In this case, one must employ a
smaller value of α to balance the second and third terms.

While the above qualitative arguments provide an intuitive feel
for the interplay between the different terms, the following analy-
sis shows how to optimize λ(x) as well as α. For the purposes of
optimization, when N is large, ϕ can be considered to be a continu-
ous variable, and it is reasonable to expect that the optimum discrete
value of ϕ would be one of the nearby integers. Thus, taking the
partial derivative with respect to ϕ and equating to zero yields

ϕopt =

"
2gn

R
λ− 2

n (x)fx(x)dx

nε(N)σ2
y

# n
n+2

(7)

It is easily verified the second partial derivative is positive, i.e., ϕopt

given above is indeed a local minimizer. Note that the above equa-
tion is valid provided 1 ≤ ϕopt ≤ N . Otherwise, the optimum value
of ϕ is one of the end-points, either 0 or N . When ϕopt is given by
(7), the expected distortion becomes

Ed ≈ n + 2

2

„
2gn

n

« n
n+2

ε
2

n+2 (N)

„Z
yT yλ(y)dy

« 2
n+2

·
„Z

λ− 2
n (x)fx(x)dx

« n
n+2

+ Nε(N)σ2
x (8)

In the above expression, the point density that minimizes the sec-
ond moment (the first integral) is a delta-function, whereas the point
density that minimizes the second integral is the conventional point
density, and the optimum point density must find the right trade-
off between the two. In addition, provided ϕopt in (7) satisfies 1 ≤
ϕopt ≤ N , the optimum point density is independent of N and ε(N)
for large N , since they appear only as multiplying factors. Now,
finding the point density that minimizes (8) directly is hard, so an
indirect method is adopted here. Using the calculus of variations,
the point density λ(x) that minimizes (5) subject to the constraints
(positive, and integrates to unity) can be shown to be given by

λopt(x) =

2
4 2gnfx(x)

n
“
ϕ

n+2
n ε(N)xT x + μϕ

2
n

”
3
5

n
n+2

(9)

where the normalization constant μ is chosen such that λopt(x) inte-
grates to 1. Again, it is easily verified that since the second partial
derivative is positive, the above λopt(x) is indeed a local minimizer.

Now, it was seen above that provided 1 ≤ ϕopt ≤ N , the optimum
point density is a function independent of N and ε(N). This is pos-
sible only if the value of ϕ varies with N such that

nϕ
n+2

n ε(N)

2gn
= K, (10)

where K is independent of N , which implies that the optimum point
density λopt(x) is given by

λopt(x) =

»
fx(x)

KxT x + M

– n
n+2

, (11)

with M being a normalization constant.
The following lemmas establish critical values of the error prob-

ability, and then state that the value of M in the optimum point den-
sity above is in fact M = 0. The proofs can be found in [9, 10]; they
are omitted here due to lack of space.

Lemma 1 Define εcrit,1 as

εcrit,1 � N− n+2
n

2
42gn

R
λ
− 2

n
conv (x)fx(x)dx

n
R

xT xλconv(x)dx

3
5 , (12)

where λconv(x) is the optimum point density for a noiseless channel
(given in [5]). Then, if the index error probability satisfies 0 ≤
ε(N) ≤ εcrit,1, λopt(x) is continuous, and is given by (9) with ϕ =
N .

Lemma 2 Define εcrit,2 as

εcrit,2 = N− n+2
n

"Z „
2gnfx(x)

nxT x

« n
n+2

dx

# n+2
n

. (13)

Then, for εcrit,2 < ε(N) ≤ 1/N , the optimum point density is singu-
lar and the optimum λ(x) and ϕ are given by

λopt(x) =

„
fx(x)

KxT x

« n
n+2

, ϕopt =

»
2Kgn

nε(N)

– n
n+2

, (14)

where K is a normalization constant. Also, εcrit,2 is the largest ε(N)
for which no codepoints are merged, i.e., ϕopt = N is satisfied.

It can be verified that the above value of ϕopt and optimum point
density in (14) jointly satisfy (7) and (9), thereby showing that they
are indeed the local minimizers. Moreover, although K is indepen-
dent of N or ε(N), both N and ε(N) affect the actual value of the
overall distortion, as they should.

4. SIMULATION RESULTS

Consider a 2-dimensional i.i.d standard Gaussian distributed source
vector. The channel is modeled as a BSC with bit transition proba-
bility q and random index assignment. The generalized Lloyd algo-
rithm described in [1] is used to generate a COVQ codebook with
MSE as the distortion metric. For training the Lloyd algorithm as
well as for measuring performance, 50,000 random instantiations of
x were employed. Figs. 2 and 3 plot the expected MSE versus the
number of quantized bits B and the bit transition probability q, re-
spectively. The plots show the improvement in MSE that can be ob-
tained by using an optimum codebook (compared with the curves ob-
tained using the conventional codebook, labeled “unopt-CB”). Also,
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Fig. 2. MSE versus B, for a 2-d standard Gaussian distributed ran-
dom vector and index sent over the BSC with q = 0.005.
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Fig. 3. MSE for a 2-d standard Gaussian distributed random vector
with the conventional point density and B = 6. The index is sent
over a BSC with bit transition probability q (the x-axis). The two
vertical lines show the values of q corresponding to εcrit,1 and εcrit,2,
the two critical values of ε(N), respectively.

in Fig. 3, the two values of q corresponding to ε(N) = εcrit,1

and ε(N) = εcrit,2 are plotted, to show that the simulation results
agree with the theory over a wide range of values of q. Also, when
q > qcrit,2, the optimum point density is singular, i.e., ϕ < N .

Table 1 compares the theoretical and simulation-based values
of ϕ for different BSC bit transition probabilities q and number of
codepoints N , which shows that the theoretical and experimental
values of ϕ match closely. For the experimental results, the ϕ was
computed as the difference between N and the number of codepoints
whose Voronoi cells were empty in the Lloyd algorithm. Also shown
in the table is the observed MSE distortion.

In conclusion, this paper considered the source quantization prob-
lem when the index is sent over a noisy channel before being used
to reproduce the source at the receiver. For the case of the SEC, the
asymptotic performance with MSE distortion functions was theoret-
ically analyzed. It was demonstrated that the distortion is given by
the sum of the distortion due to channel errors and the representation
error in quantizing the source using a finite number of bits. The rate
of decay of the two terms as the number of quantization levels N
increases can be different, in which case, one of the two terms will

Table 1. Experimental and Theoretical Values of ϕ for different N
and q. The tuples correspond to (ϕexp, ϕtheory), for a 2-dimensional
standard Gaussian distributed random vector. The number below the
tuple is Ed, the expected distortion. ϕtheory is computed from (14).

N\q 0 0.0020 0.0050 0.0100

32
(32, 32)
0.1136

(32, 32)
0.1587

(32, 32)
0.2216

(32, 32)
0.3150

64
(64, 64)
0.0600

(64, 64)
0.1153

(64, 64)
0.1869

(63, 57)
0.2867

128
(128, 128)

0.0309
(128, 128)

0.0941
(114, 107)

0.1674
(82, 76)
0.2670

32
(32, 31)
0.4753

(24, 20)
0.8156

(17, 15)
1.2092

(16, 14)
1.3399

64
(45, 41)
0.4472

(31, 27)
0.8132

(22, 20)
1.2320

(20, 19)
1.3538

128
(60, 52)
0.4337

(37, 36)
0.8169

(27, 27)
1.2547

(22, 25)
1.3849

dominate as N gets large. Also, a novel theoretical analysis of the
optimum singular point density that minimizes the overall distortion
was derived, and its MSE performance evaluated. The accuracy of
the theoretical results was illustrated through simulations.
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