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ABSTRACT
A constrained Markov Decision Process (MDP) approach is

deployed to prove the monotone structure of optimal channel-

aware transmission policies for packet transmission over a

correlated fading wireless channel subject to an average de-

lay constraint. A transmission policy is a function mapping

channel state information (CSI), buffer states and numbers

of arriving packets to transmit probabilities. The objective

is to minimize the average transmission energy cost subject

to an average delay constraint. We use the Lagrange multi-

plier method to convert the constrained MDP to an uncon-

strained MDP and prove that the unconstrained optimal pol-

icy is threshold in the buffer state. It then follows that the

constrained optimal transmission policy is a randomized mix-

ture of two pure transmission policies that are threshold in the

buffer occupancy.

Index Terms— Markov processes, stochastic optimal con-

trol, resource management.

1. INTRODUCTION

Perfect channel state information (CSI) is exploited for opti-

mal point-to-point transmission of data packets, e.g., from a

sensor to its cluster head in a multihop sensor network or in

a file transferring system from a battery-operated node to a

base station, to enhance channel utilization subject to a de-

lay constraint. The wireless communication channel is mod-

elled to evolve as a Finite State Markov Chain [1, 2]. The

transmission policies optimization problem is formulated as

an average cost, infinite horizon, countable state constrained

MDP (CMDP), where the objective is to minimize the average

transmission energy cost and the constraint is that the average

delay cost must be less than a certain threshold.

The structure of the constrained optimal transmission pol-

icy is analysed using the Lagrange multiplier method. First,

the CMDP is transformed into an unconstrained average cost

MDP by introducing a Lagrange multiplier [3, 4]. Second,

it is established based on the concept of supermodularity that

the optimal policies of the unconstrained MDP is monotone in

the buffer state. Due to a classical result in [3], it follows that

the constrained optimal transmission policy is a randomized

mixture of two threshold transmission policies.

The main result of this paper is the analytical proof that

the constrained optimal transmission policy is monotonically

increasing in the buffer state. In particular, the constrained

optimal transmission policy is a randomized mixture of two

transmission policies that are non-randomized and monotoni-

cally increasing (hence threshold) in the buffer state.

Related work: The most comprehensive reference on con-

strained MDPs is [4]. Important existence results for count-

able state average cost MDPs are given in [5, 6, 7]. In this pa-

per, monotonicity of the optimal policies is proven by the con-

cept of supermodularity, which is covered in depth in [8]. In

[9], the concept of supermodularity is also used to prove op-

timality of monotone rate control policies. However, therein,

the authors assume a finite state space and, additionally, the

evolution of the components of the system state are com-

pletely decoupled. As a consequence, the analysis is the same

for both correlated and i.i.d channels. In comparison, in the

system model we consider, the evolution of the channel state

affects the evolution of the buffer state as the number of suc-

cessful transmissions depends on the channel state. Hence,

the analysis is much more complicated for the case of corre-

lated fading channels than i.i.d channels.

The organization of the paper is as follows. The system

model and the CMDP formulation are given in Section 2.

Monotonicity of the optimal transmission policies is estab-

lished in Section 3. Section 4 concludes the paper.

2. ENERGY AND DELAY CRITICAL PACKET
TRANSMISSION

Consider the transmission of packets from a node (e.g., a sen-

sor) to another node (e.g., a local hub node) over a correlated

fading wireless link. Assume that time is divided into equal-

size slots indexed by n = 0, 1, 2, . . .. During each time slot,

exactly one packet can be transmitted. If a packet is transmit-

ted but not successfully received, the packet remains in the

buffer for later retransmission. Inherently, it is assumed that
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there is an instantaneous error free feedback channel, so that

the result (ACK or NACK) of each transmission is perfectly

known at the transmitter side.

System state space: At each time slot, the state of the

system is defined by the channel state information (CSI), the

buffer occupancy, and the number of packets newly admitted

to the buffer.

Due to the effect of shadowing, multipath/multiuser in-

terference, and mobility, the communication channel is cor-

related fading. In a discrete time system, a correlated fading

wireless communication channel can be modelled by a Finite

State Markov Chain (FSMC) [1, 2]. The procedures for ob-

taining a FSMC channel model include properly partitioning

the channel state domain into a finite number of ranges and

computing the corresponding transition matrix.

We assume a FSMC channel model with K states. Denote

the channel state space by Γ = {γ1, γ2, . . . , γK}, where γi

corresponds to a better channel state than γj for all i > j.

Let (pij)i,j=1,2,...,K be the state transition probability matrix,

i.e., PΓ(xn+1 = γj |x
n = γi) = pij , where xn denotes the

channel state at time slot n.

Assume that each node has an infinite buffer to store pack-

ets for transmission. Define the buffer state to be the buffer

occupancy, and denote B = {1, 2, . . . , } as the buffer state

space. Denote the buffer state at time n by bn, where bn ∈ B.

Denote the number of new packets arriving at the buffer

at time slot n by yn ∈ Y , where Y is the arrival event space.

For notational simplicity, assume that at each time slot, one

packet arrives at the buffer with probability δ, i.e. assume

an i.i.d probability distribution function pY (·) : Y → [0, 1],
where pY(1) = δ, pY(0) = 1− δ.

The system state space can then be denoted by S = B ×
Γ × Y. For every s = [b, x, y] ∈ S, the action set is A =
{0, 1}, where 0 stands for the action of non-transmitting and

1 stands for transmitting, except when b = 0 then the only

allowed action is a = 0. Selecting action a ∈ A for state s ∈
S yields a transmission cost c(·, ·) : S×A→ R+ and a delay

cost d(·) : A → R+. Assume that c(·, 0) = 0 and d(1) = 0.

Furthermore, c(·, ·), which represents the transmission energy

cost, should only depend on the channel state and the action.

c(·, ·) non-increasing in the channel state.

If a transmission is attempted when the system is in state

s = [b, x, y], the success probability depends on the channel

state x. Denote the success probability function by f : Γ ×
A → [0, 1], where f(·, 0) = 0 and f(·, 1) is increasing, i.e. a

higher channel state gives to a higher success probability.

The evolution of the system is then given by

p(sn+1|sn, an)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pΓ(xn+1|xn)pY (yn+1)f(xn, an)
if bn+1 = bn − an + yn

pΓ(xn+1|xn)pY (yn+1)
(
1− f(xn, an)

)
if bn+1 = bn + yn

0 otherwise.

CMDP formulation: The objective of the CMDP is to

find a transmission policy that minimizes the average trans-

mission cost subject to a constraint on the average delay cost.

A transmission policy is a function mapping system states to

transmit probabilities for every time slot. Whereas, a station-

ary transmission policy is independent of time and maps sys-

tem states directly to transmit probabilities: u(·) : S → [0, 1].
In this paper we focus on stationary policies. A condition on

the existence of an optimal stationary policy will be given in

the next section.

The average transmission and delay costs associated with

a transmission policy u for initial state s0 are given by

C(u|s0) = lim
N→∞

1

N
Eu

[ N∑
k=1

c(sk, ak)|s0

]
, (1)

D(u|s0) = lim
N→∞

1

N
Eu

[ N∑
k=1

d(ak)|s0

]
. (2)

The problem of optimizing a transmission policy is given by

C∗(s0) = inf
u

C(u|s0) s.t. D(u|s0) ≤ D, ∀s0 ∈ S. (3)

3. MONOTONE OPTIMAL CHANNEL-AWARE
TRANSMISSION POLICIES

First, we give a sufficient condition for which there exists

a stationary constrained optimal transmission policy. Then

given the proper selection of a Lagrange multiplier, the un-

constrained MDP also has a stationary optimal policy and it

can be proved that the unconstrained and constrained optimal

transmission policies are monotone in the buffer state.

3.1. Buffer Stability

Lemma 1 presents a condition for which every policy satisfy-

ing the average delay constraint induces a stable buffer.

Lemma 1. Denote min
x∈Γ

{f(x, 1)} = f. If

D

d(0)
< 1−

δ

f
(4)

then every policy u that satisfies the constraint d(u|s0) < D

induces a stable buffer, and hence a recurrent Markov chain.

Proof. Let u be a transmission policy that satisfies the con-

straint D(u|s0) < D, i.e.

D ≥ D(u|s0) = lim sup
N→∞

1

N
Eu

[ N∑
k=1

d(xk, 0)I(ak = 0|s0)
]

≥ lim sup
N→∞

1

N
Eu

[ N∑
k=1

d(γ0, 0)I(ak = 0|s0)
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The average successful transmission rate of u is given by

r(u|s0) = lim inf
N→∞

1

N
Eu

[ N∑
k=1

f(xk, ak|s0)
]

≥ lim inf
N→∞

1

N
Eu

[ N∑
k=1

fI(ak = 1|s0)
]

= f
(
1− lim sup

N→∞

1

N
Eu

[ N∑
k=1

I(ak = 0|s0)
])

≥ f
(
1−

D

d(γ0, 0)

)
> δ By (4).

Therefore the buffer is stable almost surely for policy u, i.e.

the Markov Chain is recurrent due to Foster’s Theorem [10].

3.2. Reformulation of the CMDP using the Lagrange mul-
tiplier method

For each Lagrange multiplier λ, define the instantaneous cost

of the corresponding unconstrained MDP as follows

c(sk, ak; λ) = c(sk, ak) + λd(ak). (5)

The new average cost of a policy is given by

C(u|s0; λ) = lim
N→∞

1

N
Eu

[ N∑
k=1

c(sk, ak|s0; λ)
]
. (6)

Then the dynamic programming problem becomes

Cλ|s0
= C(u∗

λ|s0; λ) = inf
u

C(u|s0; λ) (7)

In the classical use of the Lagrange multiplier technique, the

multiplier λ is chosen so that the constraint is met consistently

with the original optimization problem [3]. With such selec-

tions of λ, due to Lemma 1, the optimal transmission policy of

(7) induces a recurrent Markov chain. Hence, it follows that

the optimal average cost is independent of the initial states

and the unconstrained MDP can be rewritten as

C∗
λ = C(u∗

λ; λ) = inf
u

C(u; λ)

u∗
λ = arg inf

u
C(u; λ). (8)

3.3. Monotonicity of optimal transmission policies

Having formulated the unconstrained MDP with a Lagrange

multiplier, we prove here using the concept of supermodular-

ity that the unconstrained optimal policies of (7) is monoton-

ically increasing in the buffer state. The interpretation is that

if the buffer occupancy is larger, which indirectly implies a

relatively large average delay cost, it is beneficial to transmit

more aggressively.

Definition 1. A function F (x, y) : X × Y → R is super-
modular in (x, y) if F (x1, y1) + F (x2, y2) ≥ F (x1, y2) +
F (x2, y1) ∀x1, x2 ∈ X, y1, y2 ∈ Y, x1 > x2, y1 > y2. If the
inequality is reversed, F (·, ·) is called submodular.

Supermodularity is a sufficient condition for optimality of

monotone policies. Specifically, if F (x, y) defined as in Def-

inition 1 is supermodular (submodular) in (x, y) then y(x) =
argmaxy F (x, y) is non-decreasing (non-increasing) in x [8].

Theorem 1 and Corollary 1 are on the monotonicity of un-

constrained and constrained optimal transmission policy re-

spectively.

Theorem 1. u∗
λ(·) is deterministic and monotonically in-

creasing, and hence threshold, in the buffer state component
b of the system state s = [b, x, y], i.e., u∗

λ(·) is of the form

u∗
λ([b, x, y]) =

{
1 if b ≥ b∗xy;λ

0 otherwise,
(9)

where b∗xy;λ is the threshold buffer state for the channel state
x and the arrival event y for the given Lagrange multiplier λ.

Proof. See the appendix.

Corollary 1. The constrained optimal transmission policy u∗

of (3) is a randomized mixture of two pure threshold transmis-
sion policies, i.e.

u∗([b, x, y]) = qu∗
λ1

([b, x, y]) + (1− q)u∗
λ2

([b, x, y]), (10)

where u∗
λ1

([b, x, y]), u∗
λ2

([b, x, y]) are of the form (9).

Proof. By Theorem 4.3 of [3] and Theorem 1.

4. CONCLUSION

It is proved using the concept of supermodularity that the op-

timal constrained transmission policy is a randomized mix-

ture of two pure transmission policies that are threshold in

the buffer state. This structural result can be exploited to de-

rive efficient algorithm for estimating the optimal policy. The

analysis of the paper can be easily generalized for the case

of a finite number of actions and much more general packet

arrival processes.

Appendix - Proof of Theorem 1

For a proper selection of the Lagrange multiplier λ the opti-

mal policy of (7) induces a stable buffer. It is then possible to

verify that Assumptions 1, 2, and 3 in [5] holds. Therefore,

due to [5], there exist a stationary policy u(·), which is a limit

point of a sequence of discounted cost optimal policies for a

sequence of discount factors that increase to 1, a scalar C∗
λ

and a vector h(s) satisfying

C∗
λ + h(s) ≥ min

a∈A

[
c(s, u(s); λ) +

∑
s
′∈S

P(s
′

|s, u(s))h(s
′

)
]
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for s ∈ S. Since u(·) is a limit point of a sequence of dis-

counted cost optimal policies, u(·) inherits the structure of

discounted cost optimal policies [11], [5]. For any discount

factor α, the optimal discounted cost satisfies

Vα(s) = min
a∈As

{
c(s, a; λ) + α

∑
s′

P(s′|s, a)Vα(s′)
}

and can be computed by the recursion

V t+1
α (s) = min

a∈As

Qt+1
α (s, a)

Qt+1
α (s, a) = c(s, a; λ) + α

∑
s
′∈S

P(s
′

|s, a)V t
α(s

′

, a). (11)

Furthermore, the optimal discounted cost policy is given by

u∗
α(s) = arg min

a∈As

Qα(s, a). We now show that u∗
α(s), where

s = [b, x, y], is monotonically increasing in the buffer state b

by proving using mathematical induction that Qα([b, x, y], a)
is submodular in the buffer state and the action, i.e.

Qα([b, x, y], 1)−Qα([b, x, y], 0) = c(s, 1; λ)− c(s, 0; λ)

+
∑

x
′∈Γ,y

′∈Y

PΓ(x
′

|x)pY (y
′

)f(x, 1)
[
Vα(b + y − 1, x

′

, y
′

)

− Vα(b + y, x
′

, y
′

)
]

is monotonically decreasing in b for b ≥ 1, which holds if

Vα([b, x, y]) has increasing differences in b for all b ≥ 0 (as

c(·, ·; λ) is constant in b).

Since (11) converges for any initial condition, we can se-

lect V 0
α ([b, x, y]) with increasing differences in b. Assume

that V n
α ([b, x, y]) has increasing differences in b, we will show

that V n+1
α ([b, x, y]) also has increasing differences in b, i.e.

V n+1
α ([b + 1, x, y])− V n+1

α ([b, x, y])

−
(
V n+1

α ([b, x, y])− V n+1
α ([b− 1, x, y])

)
≥ 0. (12)

Now assume V n+1
α ([b + 1, x, y]) = Qn+1

α ([b + 1, x, y], a2),
V n+1

α ([b, x, y]) = Qn+1
α ([b, x, y], a1), V n+1

α ([b − 1, x, y]) =
Qn+1

α ([b − 1, x, y], a0) for some a2, a1, a0 ∈ A. Then (12)

becomes

Qn+1
α ([b + 1, x, y], a2)−Qn+1

α ([b, x, y], a1)

−Qn+1
α ([b, x, y], a1) + Qn+1

α ([b− 1, x, y], a0) ≥ 0

⇔Qn+1
α ([b + 1, x, y], a2)−Qn+1

α ([b, x, y], a2)︸ ︷︷ ︸
A

+
(
Qn+1

α ([b, x, y], a2)−Qn+1
α ([b, x, y], a1)

)
︸ ︷︷ ︸

≥0 By optimality

−Qn+1
α ([b, x, y], a1) + Qn+1

α ([b, x, y], a0)︸ ︷︷ ︸
≥0 By optimality

−
(
Qn+1

α ([b, x, y], a0)−Qn+1
α ([b− 1, x, y], a0)

)
︸ ︷︷ ︸

B

By (11) and induction hypothesis, it is easy to see that

A ≥
∑
x′,y′

PX(x
′

|x)PY (y
′

|y)
[
V n

α ([b + y, x
′

, y
′

])

− V n
α ([b + y − 1, x

′

, y
′

])
]
≥ B

Hence V n+1
α ([b, x, y]) has increasing differences in the buffer

state b.
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