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ABSTRACT

Consider a multiuser communication system in a frequency
selective environment whereby users share a common spec-
trum and can interfere with each other. Assuming Gaussian
signaling and treating interference as noise, we study optimal
spectrum sharing strategies for the maximization of weighted
sum-rate. In this work, we show that, if the normalized crosstalk
gains are larger than a given threshold (roughly equal to 1

2 ),
then the optimal spectrum sharing strategy is Frequency Divi-
sion Multiple Access (FDMA). We also propose several sim-
ple distributed spectrum allocation algorithms that can ap-
proximately maximize weighted sum-rates. Numerical sim-
ulation of DSL applications shows that these algorithms are
ef cient and can achieve substantially larger weighted sum-
rates than those obtained by the existing Iterative Water lling
algorithm.

Index Terms— Weighted sum-rate maximization, FDMA,
distributed optimization, dynamic spectrum management

1. INTRODUCTION

With the proliferation of radio devices and communication
services, multiple systems sharing a common spectrum must
coexist. Examples of this type include both wirelined ap-
plications, like unbundled DSL services from different ser-
vice providers, and wireless applications such as cognitive ra-
dio. Conventional spectrum management is via static FDMA
whereby each user has a pre-assigned band. As an orthogo-
nal transmission strategy, FDMA eliminates multiuser inter-
ference. However, it may also lead to low system utilization.
Recently there has been increasing interest in dynamic

spectrum management whereby users are allowed to access
the entire spectrum simultaneously. In such a system, each
user’s performance depends on not only the power alloca-
tion (across spectrum) of his own, but also those of other
users in the system. Thus, proper spectrum management is
needed to ensure a social optimum (e.g., sum-rate maximiza-
tion) is reached. A popular dynamic spectrum access strategy
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is the iterative water- lling algorithm (IWFA) [1, 2], whereby
each user greedily maximizes his own data rate by using the
well-known water- lling strategy, while assuming all other
users’ power spectrum are xed. When crosstalk interference
is small, IWFA is known to generate a sequence of power
allocations converging to the unique Nash equilibrium of an
non-cooperative game. However, when the crosstalk interfer-
ence is strong, the solution offered by IWFA can be far from
social optimum.
In this paper, we consider the maximization of the weighted

sum of achievable rates of all users in the system. Suppose
the common spectrum is divided into N frequency slots (or
tones). We show that, if the normalized crosstalk gains for
all users across all tones are greater than 1/2 (roughly), then
the optimal spectrum sharing strategy is FDMA1. This result
generalizes our early work [3] which considered only equal-
weight sum-rate maximization problem. We also present some
simple algorithms that can approximately maximize weighted
sum-rates. Similar studies on the optimality of FDMA were
presented in [4,5], albeit only for the two user case.

2. PRELIMINARIES

Suppose there areK users sharing a common spectrum which
is divided intoN frequency tones numbered by {1, 2, ..., N}.
For notational simplicity, we assume that each user acts both
as a transmitter and as a receiver2, and we number the trans-
mitters and receivers by the same index set {1, 2, ..., K}. In
this way, a physical user may act as transmitter k and receiver
l, with l �= k. Let xn

k denote the transmitted complex Gaus-
sian signal from transmitter k at tone n, and let Sn

k := E|xn
k |2

denote its power. The received signal yn
k is given by

yn
k =

K∑
l=1

hn
lkxn

l + zn
k , n ∈ N , k ∈ K,

whereN := {1, . . . , N},K := {1, . . . , K}, zn
k ∼ CN(0, N0)

denotes the complex Gaussian channel noise with zero mean
and variance N0, and the complex scalars {hn

lk} represent
1We also note that, if the crosstalk coef cients are small, then the FDMA

solution is quite far from the true global optimum.
2There is no loss of generality with this assumption since we can always

create a virtual channel with zero channel gain gains between pair of users
who do not wish to communicate.
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channel gain gains. In practice, hn
lk can be determined by the

distance between transmitter l and receiver k. Treating inter-
ference as white noise, we can write transmitter k’s achievable
data rate Rn

k at tone n [6] as

Rn
k (S

n
1 , . . . , Sn

K) := log

(
1 +

|hn
kk|2Sn

k

N0 +
∑

l �=k |hn
lk|2Sn

l

)

= log

(
1 +

Sn
k

σn
k +

∑
l �=k αn

lkSn
l

)
,

where σn
k = N0/|hn

kk|2 denotes the normalized background
noise power, andαn

lk = |hn
lk|2/|hn

kk|2 is the normalized crosstalk
gain from transmitter l to receiver k at tone n. Due to normal-
ization, we have αn

kk = 1 for all k.
Assume that transmitter k’s power is bounded:

N∑
n=1

Sn
k ≤ Pk, for k ∈ K.

For a given power allocation {Sn
k }, transmitter k’s total achiev-

able data rate is given by
∑N

n=1 Rn
k . Hence, the weighted

sum-rate maximization problem can be written as follows:

maximize
{Sn

1 ,...,Sn
K}N

n=1

K∑
k=1

wk

N∑
n=1

Rn
k (S

n
1 , . . . , Sn

K)

subject to
N∑

n=1

Sn
k ≤ Pk, Sn

k ≥ 0 n ∈ N , k ∈ K, (1)

where wk > 0 is the positive parameter characterizing the
weight to user k’s achievable rate. If w1 = · · · = wK ,
then the above problem is the standard (equal-weight) sum-
rate maximization problem.
When interference is absent (or small), signal spreading

across spectrum is optimal. In other words, if the crosstalk
gains are suf ciently small, then all frequency tones should
be utilized by all users. On the other hand, if the crosstalk
gains are large, then the communication system becomes in-
terference limited, and spectrum sharing is no longer optimal.
Intuitively, FDMA should yield a larger sum-rate in this case.
Mathematically, the set of FDMA solutions is de ned as:

S = {S ≥ 0 | Sn
k Sn

l = 0, ∀ k �= l, ∀ n} (2)

In the ensuing sections, we let Sn and S denote the power
vectors at tone n, and in the whole system, respectively, i.e.,
Sn := (Sn

1 , . . . , Sn
K) ∈ �K , and S := (S1

1 , . . . , SN
K ) ∈

�NK . We denote the power budget vector by P, i.e., P :=
(P1, . . . , PK) ∈ �K .

3. WHEN IS FDMA OPTIMAL?

In this section we show that FDMA type power allocation
maximizes the weighted sum-rate if the crosstalk gains are
larger than a certain explicit threshold.
Let us rst introduce a mild assumption on a feasible power

allocation vector S.

Assumption 1 Let Tk := {n ∈ N |Sn
k > 0}. Then, there

holds (a) mink∈K |Tk| ≥ C for some integer C ≥ 2, and (b)∑N
n=1 Sn = P.

Under this assumption, we obtain the following suf cient con-
ditions under which every global maximum of (1) is FDMA.

Theorem 1 Letw1, . . . , wK be arbitrary positive reals. Then,
any global maximum of problem (1) satisfying Assumption 1
for some C ≥ 2 must be FDMA, provided that

αn
lk > 1

2 , αn
lkαn

kl > 1
4 (1 + (C − 1)−1)2 (3)

for all n ∈ N and (k, l) ∈ K ×K with k �= l.

When C is suf ciently large, we have 1 + (C − 1)−1 ≈ 1.
In this case, the condition αn

lkαn
kl > 1

4 (1 + (C − 1)−1)2 is
essentially implied by the condition αn

lk > 1
2 . In a practical

system with large number of tones, Assumption 1 often holds
with a suf ciently large C. For the two-user case, we can
strengthen the above suf cient conditions by exploiting the
quasi-convexity of function

∑K
k=1 wkRn

k .

Theorem 2 Let K = 2 and w1 and w2 be arbitrary positive
reals. Then, any global maximum of problem (1) satisfying
Assumption 1 for some C ≥ 2 is FDMA, if the following in-
equalities hold for all n ∈ N :

(i) 2w1α
n
12

(
σn

1

σn
2

)
+ 2w2α

n
21

(
σn

2

σn
1

)
> w1 + w2,

(ii) 2w1α
n
12

(
σn

1

σn
2

)
> w1 − w2, 2w2α

n
21

(
σn

2

σn
1

)
> w2 − w1

(iii) αn
12α

n
21 >

1
4

(
1 +

1
C − 1

)2

Note that at least one inequality in (ii) holds automatically.
Moreover, if w1 = w2, then inequalities (ii) always hold and
(i) is implied by (iii)3.
In [3], it was shown that there exists a FDMA type lo-

cal maxima for equal-weight sum-rate maximization prob-
lem, even when the crosstalk gains are small (but positive),
so long as users’ power budgets are suf ciently large. It is not
clear if a similar result can be derived in the weighted sum-
rate case.

4. FINDING AN OPTIMAL FDMA BANDWIDTH
ALLOCATION

In this section, we focus our attention on how to design an op-
timal FDMA scheme for a multiuser communication system.
For notational convenience, we restrict our attention to the
equal-weight sum-rate case, i.e., w1 = · · · = wK = 1. The
algorithms can be extended to the weighted sum-rate maxi-
mization problems in a straightforward manner. Recall (2)
that the set of FDMA solutions is denoted by

S = {S ≥ 0 | Sn
k Sn

l = 0, ∀ k �= l, ∀ n} .
3From the relation between arithmetic and geometric means, it can be

easily seen that, if w1 = w2 and αn
12αn

21 > 1/4, then (i) holds.
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Then, the optimal FDMA frequency allocation problem can
be described as follows:

maximize
S

K∑
k=1

N∑
n=1

log
(
1 +

Sn
k

σn
k

)

subject to S ∈ S,

N∑
n=1

Sn
k ≤ Pk. (∀ k ∈ K) (4)

Notice that, due to the FDMA condition, the interference term∑
l �=k αn

lkSn
l is absent from the objective function. This makes

the objective function concave. However, problem (4) re-
mains a nonconvex problem due to the constraint S ∈ S.
In what follows, we show some simple algorithms for

computing an approximately optimal FDMA bandwidth allo-
cations. The rst one is based on dual decomposition, while
the second is based on the idea of greedy local search.

A dual decomposition method
De ne the bounded set S̃ ⊂ �NK by S̃ := {S ∈ S | 0 ≤
Sn

k ≤ Pk ∀ k, n}. Then, we can easily see that the constraint
region of (4) is unchanged if S is replaced by S̃. Hence, by
using multipliers {λk}, the dual function can be written as

d(λ) =
K∑

k=1

λkPk +
N∑

n=1

max
k=1,...,K

Mn
k (λk),

whereMn
k is de ned byMn

k (λk) = log(1+S
n

k/σn
k )−λkS

n

k

with the optimal power level

S
n

k =
{
Pk(λ−1

k − σn
k ) if λk > 0

Pk if λk ≤ 0.

Here Pk(·) denotes the projection of a real number to the in-
terval [0, Pk]. Then a subgradient of d(λ) is given by

∇d(λ) =
(

P1 −
∑

n∈N1(λ)

S
n

1 , . . . , PK −
∑

n∈NK(λ)

S
n

K

)T

with the tone set Nk(λ) de ned by

Nk(λ) :=
{

n ∈ N
∣∣∣∣ Mn

k (λk) = max
k′=1,...,K

Mn
k′(λk′)

}
.

Notice that the components of subgradient∇d(λ) correspond
to each user’s unused power (or de cit power if negative).
The dual minimization problem is given by

minimize d(λ) subject to λ ≥ 0.

In the standard dual descent method for this problem, the dual
variable is updated as λ(ν+1) := [λ(ν) − α(ν)∇d(λ(ν))]+,
where [·]+ denotes the projection onto the nonnegative or-
thant. In actual, there are many possible rules to select step-
sizes {α(ν)}, the choice of which can have signi cant impact

on the convergence speed and the implementation complex-
ity of the algorithm. In the later numerical experiments, we
adopt the following stepsize rule:
Stepsize Rule α(ν) := θ(ν)(d(λ(ν)) − L∗)/‖∇d(λ(ν))‖2,
where L∗ is a known lower bound of the dual function d, and
θ(ν) is calculated according to the following rule: (i) θ(0) = 2,
(ii) θ(ν+1) = θ(ν)/2 if d(λ(ν)) ≥ d(λ(ν−10)) for ν ≥ 10, and
(iii) θ(ν+1) = θ(ν) if d(λ(ν)) < d(λ(ν−10)) or ν ≤ 9.

Local search algorithm
We next present a ef cient combinatorial local search algo-
rithm which has an overall complexity of O(NK logN). In
the algorithm, we sequentially allocate each tone to a certain
user at each iteration. Hence, the algorithm terminates in N
iterations, and the obtained solution is always FDMA. The
outline of the algorithm is as follows.

Step 0 Set the unallocated tone set U (0) := N . Set ν := 0.

Step 1 Consider all the possible combinations of (n, k) ∈
U (ν) ×K. Calculate the rate increment for each (n, k).

Step 2 Find the tone n and the user k which yield the largest
rate increment. Allocate tone n to user k.

Step 3 Let U (ν+1) := U (ν) \ {n}. If U (ν+1) = ∅, then ter-
minate. Otherwise, return to Step 1 with setting ν :=
ν + 1.

In most cases, the computational complexity for the rate in-
crement in Step 2 isO(1). Therefore, a direct implementation
of the above procedure will result in O(N2K). However, we
note that, by sorting the noise parameters {σn

k } appropriately,
we can reduce its complexity to O(NK logN). Because of
the limitation of space, we omit the details of the algorithm
here.

5. NUMERICAL RESULTS ON DSL SCENARIOS

We consider two DSL scenarios: upstream and downstream.
We set the background noise level N0 = −140 dB, and the
capacity gap Γ = 12 dB. Then, the normalized crosstalk gains
and noise powers are chosen as αn

lk := Γ|hn
lk|2/|hn

kk|2 and
σn

k := ΓN0/|hn
kk|2.

Downstream scenario: we consider a ADSL downstream
scenario with two users, in which users 1 and 2 has a loop
length of 10k feet and 13k feet, respectively, with a crosstalk
distance of 5k feet. The loop topology is shown in Figure 1.
We set the number of tones N = 256 and the power bud-
get (20.4 + β) dB, where β is chosen from −20 dB to 20
dB. The obtained sum-rates by three algorithms are plotted
in Figure 2. As the gure shows, the sum-rates obtained by
the dual decomposition method are slightly (0.2%–0.8%) bet-
ter than those by the local search algorithm, and both increase
linearly with the power budget level β. However, the sum-rate
obtained by IWFA peaked as β is increased.
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Upstream scenario: we consider a VDSL upstream scenario
with eight users, in which 4 users have loops length of 4k feet
and other 4 users have those of 2k feet. The loop topology is
shown in Figure 3. We set the number of tones N = 1024,
and the power budget (20.4 + β) dB where β is chosen from
−20 dB to 20 dB. Figure 4 shows the obtained sum-rates
for each β, from which we can see a trend similar to Fig-
ure 2. Figure 5 shows the CPU time for each method to ter-
minate. Compared to the dual decomposition method and
IWFA, the local search algorithm terminates in very short
time (approximately 0.15 seconds). In most cases the local
search algorithm is faster than the dual decomposition method
and IWFA. This speed advantage becomes more pronounced
when N andK are large.
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