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ABSTRACT

We introduce a Likelihood Based Multiple Access (LBMA)
communication/estimation scheme for nonrandom parameter
estimation in wireless sensor networks with additive multiple
access channels. Constraining the system in terms of energy
and allowing the available number of degrees of freedom to
scale as n“, 0.5 < a < 1, we prove that LBMA is asymp-
totically efficient. Thus, the new scheme is appropriate for
large networks. LBMA is, in addition, simple to implement
and relies upon an intuitive approach.

Index Terms— Wireless Sensor Network, Multiple ac-
cess, Multiterminal inference, TBMA

1. INTRODUCTION

In decentralized inference problems in WSNs one is inter-
ested in making inference about a parameter embedded in the
nodes’ observations. It is here assumed that the nodes of the
network deliver messages through a common Multiple Ac-
cess Channel (MAC) to a single Fusion Center (FC), and a
central concern is the design of the messages to be sent over
the MAC subject to power and bandwidth constraints. The
reference scenario is depicted in Fig. 1, where s(x;;t) is the
waveform that the i*” node delivers over the MAC to convey
information about the observation x;. Individual waveforms
are added by the MAC that also introduces the noise term
w(t). At the receiver (FC) r(x;t) is used for computing the
estimate of f. Relying upon the additive structure of the MAC
we design suitable waveforms s(x;;t) as well as the form of
the final estimator.

We propose in this paper two multiaccess schemes that
lead to the asymptotically efficient parameter estimation at
the fusion center. A key feature of the proposed schemes is
that the asymptotic efficiency is achieved with respect to the
un-quantized sensor observations whereas conventional dis-
tributed estimation schemes usually assume local quantiza-
tion before transmission.
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Fig. 1. Block scheme of the additive MAC. The notation (0,7")
denotes time windowing of the corresponding signal. H(f) is an
ideal (—W, W) band-limiting filter, and w(¢) is the noise term.

The idea is to set s(z;;t) proportional to the local score
0ln p(x;;t) /0t (derivative of the log-likelihood), with ¢ span-
ning the allowable values of the unknown #. Thus, as the
MAC adds these signals, the channel output contains a term
proportional to the global score O1np(x;t)/0t. In the ab-
sence of noise and of other system constraints, from such a
global score, the asymptotically efficient Maximum Likeli-
hood (ML) estimate of § can be simply obtained.

We show that the simple LBMA scheme is asymptotically
efficient provided that transmission bandwidth scales with the
number of sensors n in the network as n® with 0.5 < o < 1.
This implies that efficiency can be achieved with bandwidth
per sensor node approaching to zero. We also argue infor-
mally that an optimal design of the processing at the sensor
level, combined with an optimal exploitation of the channel
structure, cannot achieve the performances of the LBMA, if
these two steps are dealt with separately. In other words,
separate (source/channel) schemes are inappropriate for our
multiterminal inference task. This comes with no surprise be-
cause Shannon’s separation theorems usually do not hold true
in multiterminal scenarios.

The organization of the paper is as follows. Sections 2
and 3 deal with two different implementations on the LBMA
idea, while Sect. 4 explores the performances obtainable with
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separate approaches. Sect. 5 summarizes the main issues.
The main results of this paper are contained in two theorems
whose proofs are only sketched, for space reasons. All the
details can be found in [1].

2. LIKELIHOOD BASED MULTIPLE ACCESS

We assume that § € O (O is an open finite interval) and that
the observations x;’s at the nodes are independent and iden-
tically distributed (iid) samples drawn from the pdf p(z;6).
Also, we neglect fading effects as well as any synchroniza-
tion concern so that when the nodes deliver suitable function
of their observations to the FC through the MAC, the output
of this latter is simply a bandlimited version of the sum of the
inputs, with Gaussian noise added.

Specifically, denoting by s(x;;t) the waveform sent by
the i'" sensor and by s(z;t) = Y. s(z;;t) the sum of
that across the n sensors, the signal received at the FC is
r(x;t) = §(x;t) + wpL(t), 0 < t < T, where 5(x;t) rep-
resents the signal s(x;¢) processed by the ideal channel low-
pass filter, wpy (t) is the bandlimited noise process added by
the MAC, and (0, T') is the transmission interval. The set ©
can be always mapped onto the transmission interval and, for
simplicity, we henceforth identify © with (0, 7).

We assume that two constraints must be verified. First, the
average energy £ spent by each node for transmitting s(z;; t)

must be bounded
E [/SQ(wi;t)dt] <E. 1))

The second constraint is on the number 2WT of degrees of
freedom of the waveform set, where W is the available band-
width. In the following we fix 7" and allow W to vary.

Assume now that s(x;;t) = AdInp(x;t)/0t, 0 < t <
T, so that sensors deliver the derivative of the log-likelihood
computed at the observed z;, i.e., they send over the MAC the
score function. In the above A is a constant to be chosen in
order to fulfill constraint (1). This yields r(x;t) = s(x;t) +
e(x;t) + w(t), where e(x; t) = 5(x;t) — s(a;t) and

AZ 8lnp xl,t Olnp(zx; t).

ot

@

In the absence of noise and filtering, the received signal
would be nothing but the score function (that based on the
whole observation vector x), and it would be a simple matter
to compute the ML by integration and maximization. This
motivate our definition of the (analog) LBMA estimator

0 = arg H[laX] l(z;t) 3)

with [(z;t) = /t r(z; &)dé = Inp(x;t) — Inp(x; 0)
0
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Fig. 2. Conceptual block diagram for discrete LBMA. Sen-
sors observe the z;’s and build two waveforms so(z;; ) and
s(x;; t) carrying information about the rough estimator 90 and
about the refinement, respectively. These contributions are re-
covered at the receiver which outputs the final estimation )
according to the Fisher scoring approach.

The following theorem states the main properties of the LBMA
estimator. R

Theorem 1:  Let 0 be the LBMA estimator. If the band-
width scales with the network size as W ~ n®, 0.5 < a <
1, then 0 is asymptotically efficient, i.e., \/ﬁ(é - 0) 4,
N (0,1/1(9)), and complies with the stated constraints on
the waveform energy £ and on the number of degrees of free-
dom. A

In the above AV (a, b) denotes a Gaussian distribution with
mean a and variance b, I(6) is the Fisher information per

sample for the parameter 0, and %, means convergence in
distribution.

It is worth noting the role of . As turns out in proving
the theorem, a coefficient o > 0.5 ensures that the error due
to filtering can be asymptotically ignored, while the condition
a < 1 serves to avoid that too much noise affects the system.
In practice, of course, when o > 1 we are simply saying that
the excess of bandwidth cannot be exploited for improving
the system performance.

Note also that the stated convergence holds true regard-
less of the value of £, this latter only ruling the rate of con-
vergence. It could be also of interest to investigate the scaling
behavior with respect to the energy, see also [5].

Sketch of the Proof. The proof amounts to showing that
the filtering error can be controlled with the available scaling
law of the bandwidth with n, and that the noise term can be
neglected when n grows to infinity. For space reasons here
we offer only an outline of the proof that can be found in its
rigorous and complete form in [1].

In [1] we show that (i), on the average, the filtering er-
ror e(x;t) is uniformly upper bounded with respect to both
the time ¢ and the true parameter ¢; and (i) that the supre-
mum of the noise term goes to zero in probability, namely
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lwpL (t)]

SUDse(0,1) —m ~ —— 0. On the other hand, from egs. (4)
and (3) we see that ) basically differs from the ML estimator
for the presence of the filtering error and of the noise and, ex-
ploiting the two above results, these can be shown to become
negligible in the asymptote of n — oco. The consequence is
that the same properties of the ML estimator can be asymp-

totically reached, that is the statement of Theorem 1. o

3. DISCRETE LBMA

A discrete version of the LBMA estimator can be conceived
by a refining process. We assume that the FC computes first
a rough estimator, say 50, by exploiting suitable waveforms
so(z;;t) sent by individual nodes, and then the performance
of this rough estimator is improved to ensure asymptotic ef-
ficiency. The basic requirements for the rough estimator 50
are: (i) it must be y/n-consistent [2], and (4¢) the bandwidth
of the waveforms so(z;;¢) must not grow with the number
of sensors n. The latter property ensures that, supporting the
FC with the set {so(x;;¢)}",, has negligible impact on the
degrees-of-freedom constraint, in the asymptote of n — oc.

Many estimators possess such properties. One choice is
based on the so-called Type Based Multiple Access (TBMA)
scheme [3, 4]. Thus, assume for the time being that 50 is the
TBMA estimator computed by arbitrary quantization of the
sensors’ observations z;’s (the y/n-consistency easily follows
from the known properties of the TBMA estimator, see [3, 4]).
The waveforms so(x;;t) provided by the nodes in order to
build the TBMA at the FC are just the observed outcomes
of the quantized observations, encoded over a signal constel-
lation such as an orthonormal set of x functions. As x scales
with the number of quantization levels but does not scale with
the number of sensors [3], the communication load is asymp-
totically negligible. Also, the waveforms’ energy constraint
is easily managed by setting the amplitudes of the signals [3].
Thus, providing the FC with the rough estimator poses no
problems.

Consider now the refinement step. Let us introduce K =
2WT orthonormal waveforms (also orthogonal to the previ-
ously introduces  signals), say {1y (¢)}2_,, and assume that
each sensor conveys K uniformly spaced samples' of its local
score, as the coefficients in a linear combination of the basis
function {1y (t)}X_,. The aggregate signal received at the FC
is?

AZ(&lnp:ct)>tk¢k(t)7 )

where ty, = (k- 1/2)T/K, k=1,2,..., K.
The definition of the discrete LBMA is as follows.

"Note that the score is sampled but these samples are not quantized: The
adjective discrete is thus referred to the parameter (i.e., time) axis.
2Subindex tj, means that the quantity in parentheses is computed at ¢.

e Letus define 56 = arg ming, |§0
index k attaining the minimum, i.e., 0 = t,,
0} is used as rough estimator in place of 6.

—tg|, and let m be the
. Such a

e Let ¢(t) be the mth waveform of the basis functions,

e B(t) = (D).

e Let r the projection of the MAC output signal (filtered
and noisy version of s(x; ) in eq. (5)) onto ¢(¢).

The discrete LBMA estimator is

M. K
nl(By) V€

~ r

6 =06+

(6)

Exactly as for the analog LBMA case, we have the fol-
lowing result.

Theorem 2: Let 0 be the discrete LBMA estimator. If the
bandwidth scales as W ~ n®, 0.5 < a < 1, then 0 is asymp-
totically efficient, i.c., \/n(6 — 6) LN (0,1/1(0)), and
complies with the stated constraints on the waveform energy
& and on the number of degrees of freedom. A

As for the analog LBMA a tradeoff exists. An exponent
o > 0.5 ensures that the ¢;’s sample accurately the interval
(0,T), which yields a ‘good’ (i.e., y/n-consistent) rough esti-
mator 1/9\(’] Conversely, an exponent o < 1 limits the number of
degrees of freedom used by the system and, as a consequence,
limits the noise to a level that becomes asymptotically negli-
gible.

Sketch of the Proof. The complete proof is provided in [1].
The basic ideas are now described. First, it can be easily seen
that 5(’) is \/n-consistent as 6 is. Thus we can use the former
instead of the latter as a rough estimator.

As to the refining step, this is based on the so-called Fisher
Scoring (FS) method (see, e.g., Theorem 4.19 in [2]): Let 50
be a y/n-consistent estimator of the parameter 6 (‘starting’
estimator); then the refined estimator

~ ~ 1 ol ot
Bog =04 — 1 < np(@; )> RN

TLI<90) ot b0

is asymptotically efficient, in the sense that v/n(f g —6) ——
N (0,1/1(8)).

It is not difficult to envisage that the second addend on
the RHS of eq. (6) provides just the refinement required by
the FS method, and the proof of Theorem 2 reduces to show
that the effects of filtering and noise can be controlled. In [1]
this is done by exploiting the special properties of the prolate-
spheroidal wavefunctions (PSWFs) [6]. e

4. SEPARATE SOURCE-CHANNEL CODING

To assess an approximate comparison between the perfor-
mances of the LBMA and those of a separate (source/channel
coding) scheme, let us consider the the so-called quadratic
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Gaussian CEO problem. There, the observations x;’s, given
6, are normally distributed with mean 6 and variance o2, and
0 itself is Gaussian with zero-mean and variance . As op-
posed to our setup, in the CEO problem the parameter to be
estimated is random so that the comparison between the two
approaches is only indicative (we are comparing two schemes
working not under the very same setting).

The distortion rate function for the quadratic Gaussian

CEO problem [8, 9] can be bounded as D(R) > %
Assume that the source outputs one symbol each 7" sec-
onds, a bandwidth W is available, and an average power con-
straint of £/T is imposed. Following [7] we have that, even
in the over-idealized scenario of n co-located (or fully cooper-
ative) sensors, the maximum rate achievable over a Gaussian

MAC with noise spectral density Ny /2 is
C =WTlog [1+&n*/(NoWT)].

Using now the previous formula for C' in the above bound for
the distortion rate D(R), and assuming W ~ n®, 0.5 < a <
1, we get
olo? 1
D> " ~
~ 02C +0?

n®logn

so that the distortion scales worse than 1/n. The conclusion
is that a separate scheme, although over-idealized, cannot en-
sure the scaling law of the LBMA.

5. SUMMARY AND DISCUSSION

As in many multiterminal scenarios, the guidelines for de-
signing inference over MAC are not so clear as in a single-
terminal setting. This is in part due to the fact that Shannon’s
separation theorem usually does not apply to multiterminal
environments. In addition, making inference about a parame-
ter embedded in an ensemble of observations is a dramatically
different problem with respect to that of recovering at the re-
ceiver side the original ensemble of samples.

Generally speaking, a convenient approach is to exploit
the possible matching between optimum estimation structure
and the channel input/output characteristic. In the case of the
MAC considered here, the output of the channel is the sum of
its inputs (plus noise). Thus, a very simple approach amounts
to impose that each sensor delivers over the common MAC
the locally measured score function (derivative of the log-
likelihood). Indeed, at the FC these are added by the MAC,
thus yielding the global score function that is sufficient for es-
timating 6. In a sense, once that we have carefully chosen the
input signals, the optimal estimator is the channel itself.

Exploiting this straightforward idea we propose an esti-
mation/communication strategy that we call LBMA (Likeli-
hood Based Multiple Access) and prove its asymptotic effi-
ciency in the limit of increasingly large number of sensors 7.
We investigate the system resources that guarantee the LBMA
optimality. It turns out that, given an energy constraint for the

waveform to be sent over the MAC, an available bandwidth
W (or, equivalently, a number of degrees of freedom) scaling
as n®, 0.5 < a < 1 is sufficient. In fact, an exponent too
small, say o < 0.5, implies that W grows too slowly and the
bandwidth is not sufficient to limit the filtering channel dis-
tortion; that is, the requisite log-likelihood function curvature
cannot be represented. On the other extreme, if the bandwidth
grows too fast, & > 1, the noise term that impairs the system
performance as too many noise enters the FC.

Two possible implementations of the LBMA idea are ex-
plored. Implementation of the analog LBMA is extremely
simple in transmission, but requires some complexity at the
fusion center where a search over a parameter space is to be
carried over. The situation is reversed for the discrete LBMA,
which requires a simpler structure at the receiver with a little
more complex transmission (sensors’) scheme.

In this paper, all the proposed schemes rely upon the as-
sumption of perfect synchronization among sensors. In real
bandpass channels, however, phase uncertainty and different
link gains are usually expected. These issues can be addressed
in strict analogy with [3], where possible remedies are illus-
trated. At any rate, we have performed numerical simulations
(not reported here for the sake of brevity) to investigate the
sensitivity of the proposed LBMA schemes. As one would
expect, asynchronous transmissions may strongly degrade the
system performance, while different gains for different links
seem to cause more tolerable performance losses.
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