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ABSTRACT

A space-time optimal power schedule for multiple distributed MIMO
links without the knowledge of channel state information at transmit-
ting nodes is proposed. This new approach exploits both the spatial
and temporal freedoms of distributed MIMO links. A readily com-
putable expression for the ergodic sum capacity of the MIMO links
is derived. Based on this expression, a projected gradient algorithm
is developed to optimize the power allocation. For a symmetric set
of MIMO links, it is observed that the space-time optimal power
schedule reduces to a uniform isotropic power schedule when nomi-
nal interference is low, or to an orthogonal isotropic power schedule
when nominal interference is high. Furthermore, the transition re-
gion between the latter two schedules is seen to be very small in
terms of nominal interference-to-noise ratio.

Index Terms— MIMO systems, space-time power schedule,
wireless mesh networks.

1. INTRODUCTION

In a large wireless mesh network of many MIMO nodes, multiple
MIMO links must share a common frequency band concurrently to
ensure a high spectral ef ciency of the whole network [1]. Develop-
ing optimal power schedule for a set of co-channel, concurrent and
neighboring MIMO links is therefore important.

Power schedule for multiple MIMO links has been studied in
[2], [3], [4] and [5]. In [2], a space-only (i.e., time-invariant) power
schedule is presented, and an iterative algorithm leading to the Nash
equilibrium is developed. In [3], the same space-only criterion is
used, but a projected gradient algorithm [6] is developed that yields
a better result. In [4], the space-only approach is considered with-
out channel state information (CSI) at transmitting nodes. In [5],
a space-time power schedule is proposed that generalizes the ap-
proaches used in [2] and [3].

In this paper, we present a space-time optimal power schedule
without CSI at transmitting nodes. This work goes beyond the work
[5] that assumes CSI at transmitting nodes and also beyond the work
[4] that assumes a time-invariant transmitting covariance matrix at
each link.

In the absence of instantaneous CSI at transmitting nodes, the
statistical CSI is necessary for designing power schedule. We as-
sume that the MIMO channel between each transmitting node and its
receiving node is a complex Gaussian matrix with independent and
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identically distributed (i.i.d.) entries. We derive a “closed form” ex-
pression for the ergodic sum capacity of multiple MIMO links. This
expression consists of nite sums and a simple one-dimensional in-
tegral. It is readily computable. Another important result in this pa-
per is the development of a projected gradient algorithm that allows
one to maximize the ergodic sum capacity and hence to compute the
corresponding optimal power schedule.

An important case study to be shown is based on a set of sym-
metric MIMO links. We will show that the space-time optimal power
schedule reduces to a uniform isotropic power schedule when the in-
terference level is low, or to an orthogonal isotropic power schedule
when the interference level is high. Furthermore, the transition be-
tween the latter two schedules is very sharp along the interference-
to-noise ratio (INR) axis. All space-only power schedules, including
those in [4], are shown to be sub-optimal compared to ours. It is
important to note that by INR, we refer to a nominal INR unless
speci ed otherwise. The nominal INR can be kept constant while
the actual INR changes, which will be further explained.

2. SYSTEMMODEL

We consider a network of M nodes operating in a common time-
frequency band. Each node has N antennas. During every time slot,
there are L concurrent links. Each active transmitting node deliv-
ers information only to one active receiving node. And each active
receiving node receives information only from one active transmit-
ting node. We will assume that the channel matrices remain constant
over L consecutive time slots but change randomly over an interval
of many multiples of L time slots. We will design the power sched-
ule to maximize an ergodic network capacity which is averaged over
the statistical distribution of the channel matrices. This capacity is
achievable (approximately) over the interval of many multiples of L
time slots.

The vector of the received signal yi at the ith receiving node can
be written as

yi =

�
ρi

N
Hi,ixi +

L�
j=1,j �=i

�
βi,j

N
Hi,jxj + vi (1)

where Hi,j is the N×N channel matrix between the jth transmitting
node and the ith receiving node, ρi denotes the signal-to-noise ratio
(SNR) of the ith link, βi,j , j �= i is the INR of the jth transmitting
node to the ith receiving node, xi denotes the N × 1 vector of the
normalized transmitted signal from the ith transmitting node, and
vi is the N × 1 vector of the i.i.d. additive white Gaussian noise
(AWGN) with zero mean and unit covariance matrix Cvi

= IN .
Here IN denotes an N ×N identity matrix.
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The rst term in (1) represents the signal-of-interest component
at the ith receiving node, while the second term is the sum of interfer-
ing signals from all other L− 1 transmitting nodes. We assume that
all the normalized transmitted signal is Gaussian distributed with
zero mean vector and covariance matrix Pi � E

�
xix

H
i

�
, where

E{·} stands for the statistical expectation, and (·)H denotes the ma-
trix Hermitian transpose. Without loss of generality, we assume that
tr{Pi} = N, i = 1, · · · , L, where tr{·} stands for the trace of a
matrix. In the sequel, we make use of the following assumptions:

• There is no coding cooperation among different transmitting
nodes and receiving nodes.

• The interfering signals are unknown to the receiving nodes,
and single user receiver is used at each receiving node.

• The entries of Hi,j are i.i.d. complex Gaussian distributed
with zero mean and unit variance, that is, the channel is Ray-
leigh at fading. The signal power loss is included in SNR
ρi, and INR βi,j .

• There is no CSI at any transmitting node, and the ith receiving
node knows the CSI of the link-of-interest Hi,i.

3. ERGODIC SUM CAPACITY

For a given set of Pi, i = 1, · · · , L, the overall ergodic sum capacity
of the total L links can be written as

I(P1, · · · ,PL) = EH

�
L�

i=1

log2

���IN +
ρi

N
Hi,iPiH

H
i,iR

−1
i

���
�

(2)
where | · | denotes the determinant of a matrix, EH{·} stands for
the statistical expectation with respect to all channel matrices H ��
HT

1,1, · · · ,HT
L,L

�T , and Ri is the interference-plus-noise covari-
ance matrix at the ith receiving node

Ri =
L�

j=1,j �=i

βi,j

N
Hi,jPjH

H
i,j + IN .

Note that for a symmetric set of MIMO links, no link suffers a fair-
ness problem under the ergodic sum capacity.

Let us denote Pi = UiDiU
H
i as the eigenvalue decomposi-

tion of Pi, where Ui is an N × N unitary eigenvectors matrix,
and Di = diag{di1, di2, · · · , diN} is an N × N diagonal ma-
trix of all eigenvalues. For convenience, we will use the N × 1
column vectors di � [di1, di2, · · · , diN ]T , i = 1, · · · , L. Since
Hi,j , i, j = 1, · · · , L, has i.i.d. entries, the statistics of Hi,j is
identical to that of Hi,jUj [7]. Hereafter, for simplicity, we write
the ergodic sum capacity expression (2) as

I(d1, · · · ,dL) = EH

�
L�

i=1

log2

���IN +
ρi

N
Hi,iDiH

H
i,iR

−1
i

���
�

=
L�

i=1

	
EHi



log2

���IN + HiΛiH
H
i

����−
EH̄i



log2

���IN + H̄iΛ̄iH̄
H
i

����� (3)

where Ri =

L�
j=1,j �=i

βi,j

N
Hi,jDjH

H
i,j + IN

Hi = [Hi,1, · · · ,Hi,L]

H̄i = [Hi,1, · · · ,Hi,i−1,Hi,i+1,Hi,L]

Λi = diag




λ
T
i,1, · · · , λT

i,L

��
Λ̄i = diag




λ

T
i,1, · · · , λT

i,i−1, λ
T
i,i+1, · · · , λT

i,L

��

λi,j =

�
βi,j

N
dj , j �= i

ρi

N
di, j = i .

It can be seen from (3) that the ergodic sum capacity expression is a
summation of 2L logarithm terms all having a similar structure.

A closed form expression for the ergodic sum capacity (3) can
be obtained with the help of [8], where a determinant representation
for the distribution of quadratic forms of complex Gaussian matrix
[9] has been used. We have

I(d1, · · · ,dL) = log2(e)

L�
i=1

�
N−1�
n=0

NL�
k=1

ciknQ(n, γi,k)−

N−1�
n=0

N(L−1)�
k=1

diknQ(n, γ̄i,k)

�
� (4)

where λi,k � [Λi]k,k, λ̄i,k � [Λ̄i]k,k denote the (k, k)-th element
of matrix Λi and Λ̄i, respectively, and

Q(n, λi,k) =

� ∞

0

ln(1 + x) xne
− x

λi,k dx

=

n�
r=0

n!(−1)(n−r)

(n− r)!
λ

(r+1)
i,k e

1

λi,k S1

�
1

λi,k

�
+

n�
r=1

r−1�
s=0

r−s−1�
h=0

n!(−1)(n−r)λh+s+2
i,k

(n− r)!(r − s− 1− h)!(r − s)
.

Here S1(x) �
�∞

x
e−t/t dt is the exponential integral function [10].

Since cikn and dikn are scalars with a similar structure, due to the
space limitation, we only write cikn in detail

cikn=
(−1)N−n−1λ

N(L−1)−1
i,k

n!

��
h�=k

(λi,k − λi,h)

�−1

bikn (5)

bikn=

��
�
�jr �=k

1≤j1<···<jN−n−1≤NL

λi,j1 · · ·λi,jN−n−1
, n = 0, · · · , N − 2

1, n = N − 1 .

(6)

The expression for dikn can be found in the journal version of this
paper.

As shown in (4)-(6), the ergodic sum capacity is now expressed
as an easy to compute function of the power scheduling vectors
di, i = 1, · · · , L, of all transmitting nodes. Such an exact closed
form expression enables us to numerically optimize the ergodic sum
capacity and hence the power scheduling.

4. SPACE-TIME POWER SCHEDULE

It has been shown in [5] that by applying a space-time power sched-
ule where the source covariance matrices are allowed to be functions
of time, a larger (averaged) ergodic sum capacity can be achieved.
However, the power scheduling scheme in [5] requires the CSI kn-
owledge at the transmitting nodes. In this section, we apply the
space-time power schedule to the closed form ergodic sum capac-
ity expression derived in Section 3 for which the instantaneous CSI
is not required at the transmitting nodes.
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Similar to [5], in order to exploit both the spatial and temporal
freedoms for power scheduling, we let P1, · · · ,PL be periodically
time varying with the period equal to L time slots. We can write an
averaged ergodic sum capacity over L time slots as

Ia

�
P̄
�

=
1

L
EH

�
L�

t=1

L�
i=1

log2

���IN +
ρi

N
Hi,iPi(t)H

H
i,iR

−1
i (t)

���
�

(7)
where P̄ is a matrix stacking the source covariance matrices of all
links:

P̄ �

�
P̄

T
1 , · · · , P̄T

L

�T

P̄i �

�
P

T
i (1), · · · ,PT

i (L)
�T

i = 1 · · · , L

and P̄i is a matrix stacking the source covariance matrices of the ith
link. Following the derivations in Section 3, we can write (7) into a
closed form as

Ia(d̄) =
log2(e)

L

L�
t=1

L�
i=1

	
N−1�
n=0

NL�
k=1

ctiknQ(n, λt,i,k)−

N−1�
n=0

N(L−1)�
k=1

dtiknQ(n, λ̄t,i,k)



� (8)

where d̄ is a vector stacking the power scheduling parameters of all
links at all L time slots

d̄ �

�
d̄1

T
, · · · , d̄L

T
�T

d̄i �

�
d

T
i (1), · · · ,dT

i (L)
�T

i = 1 · · · , L

and d̄i is a vector stacking the power scheduling parameters of the
ith link. In (8), the subscript t in the scalars ctikn, dtikn, γt,i,k, and
γ̄t,i,k denotes the corresponding quantities for the tth time slot, and
ctikn and dtikn have a structure similar to that of cikn in (5)-(6).

Taking the power constraint of each active link into account, our
space-time power scheduling approach becomes the following opti-
mization problem:

max
d̄

Ia

�
d̄
�

(9)

s.t.
��d̄i

��
1

= NL, d̄i ≥ 0, i = 1, · · · , L (10)

where (10) is the set of the transmit power constraints at all transmit-
ting nodes, and ‖ · ‖1 denotes the sum norm (or l1 norm) of a vector.
For a vector x, x ≥ 0 means that each entry of x is nonnegative.

The results in [4] show that when the INR is suf ciently low, the
ergodic sum capacity (4) is a concave function of the power alloca-
tion vectors d1, · · · ,dL, but when the INR is suf ciently high, (4)
becomes a convex function of the power allocation vectors. How-
ever, in general, it can be seen from (3) that due to the mutual in-
terference among different links, the ergodic sum capacity is neither
a convex function, nor a concave function, of the power allocation
vectors d1, · · · ,dL. Similarly, (8) is neither a convex nor a concave
function of the power scheduling vector d̄ in the general INR region.
Thus, in general, (9)-(10) is a nonconvex optimization problem.

Since the constraints (10) are simple linear constraints, the pro-
jected gradient technique [6] can be applied to obtain a local optimal
solution to the problem (9)-(10). Because of the space limitation, we

omit the details, which can be found in the journal version of this
paper.

The proposed space-time power schedule requires only the kn-
owledge of SNR and INR of each link at the transmitting nodes.
This knowledge can be easily obtained by exploiting the topology of
the wireless networks and the transmit power of each transmitting
node. In practice, the optimization procedure can be run off-line
for different combinations of SNR and INR. The resulting optimal
parameters can be tabulated. Then, in real-time applications, we only
need to look up this table to select the optimal power parameters.

Before nishing this section, we want to discuss a special case of
the proposed space-time power schedule. When only one time slot
is considered for power scheduling, we have the space-only power
schedule, which can be written as the following constrained opti-
mization problem

max
d1,··· ,dL

I(d1, · · · ,dL) (11)

s.t. ‖di‖1 = N, di ≥ 0, i = 1, · · · , L . (12)

It has been shown in [4] that at a suf ciently low interference level,
the space-only optimal power schedule is a uniform isotropic power
schedule where all links use the same source covariance matrix and
the source covariance is the identity matrix. While at a suf ciently
high interference level, it is shown in [4] that the space-only opti-
mal power schedule becomes a low rank power schedule where each
link uses a low rank source covariance matrix. However, the work
[4] does not provide a good answer for the intermediate region of
interference. Our optimization based on a single time slot yields the
space-only optimal power schedule for any given interference level,
which will be shown in Section 5.

5. NUMERICAL EXAMPLES

We now illustrate the performance of the space-time power schedul-
ing scheme presented earlier. For comparison, we will consider the
following schemes:

• Scheme 1: Space-time optimal power schedule based on (9)
and (10).

• Scheme 2: Orthogonal isotropic power schedule, where dur-
ing each time slot only one link has a non-zero source covari-
ance matrix and the source covariance matrix is the identity
matrix.

• Scheme 3: Uniform isotropic power schedule, where all links
use the same source covariance matrix and the source covari-
ance matrix is the identity matrix.

• Scheme 4: Space-only optimal power schedule based on (11)
and (12).

• Scheme 5: Low rank power schedule [4], where each link
uses a low rank source covariance matrix where the corre-
sponding ranks for L links are denoted by the string of in-
tegers (r1, r2, ..., rL). The ith link with the rank ri uses a
power vector di of ri non-zero equal entries and N − ri zero
entries.

Schemes 1 and 2 are space-time based, and all other schemes are
space-only based. Scheme 1 is space-time optimal while Scheme
2 is not. For Schemes 1 and 4, the power allocation vectors were
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initialized randomly. For each simulation point, 30 initializations
were tried and the best result was chosen.

For all examples, we consider a symmetric and circular network
with L = 2 active and symmetric links. For each case to be con-
sidered, we set ρi = 20dB, i = 1, · · · , L, and βi,j = β, i, j =
1, · · · , L, j �= i. The ergodic capacity shown in all gures is a per-
link ergodic capacity.

Fig. 1 compares the ergodic capacities of the ve schemes with
N = 2. From Fig. 1, we can see that Scheme 2 is as optimal as
Scheme 1 at high INR, and Scheme 3 is as optimal as Scheme 1
at low INR. More interestingly, the transition of the optimality from
Scheme 2 to Scheme 3 along the INR axis is very sharp (within about
1.5 dB of INR). This optimality property of Schemes 2 and 3 is also
observed in Fig. 2.
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Fig. 1. Comparison of ergodic capacities of ve schemes. Scheme
5 uses (r1, r2) = (1, 1). Here, N = 2, L = 2.

Fig. 2 compares the ergodic capacities of the ve schemes with
N = 3. Here, Scheme 5 with (r1, r2) = (1, 1) remains strongly
suboptimal even compared to Scheme 4 over the whole range of
INR. This is because under N = 3, there are effectively three in-
dependent streams. But Scheme 5 with (r1, r2) = (1, 1) uses only
two.
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Fig. 2. Comparison of ergodic capacities of ve schemes. Scheme
5 uses (r1, r2) = (1, 1). Here, N = 3, L = 2.

Recall the optimality property of Schemes 2 and 3 that Scheme
2 is as optimal as Scheme 1 when INR is larger than a threshold

and Scheme 3 is as optimal as Scheme 1 when INR is less than the
threshold. We can determine the threshold INR value β∗ by solving
the following nonlinear equation

I(β∗/N, ρ/N, N, L) = J(ρL/N, N, N)/L (13)

where J(ρL/N, N, N)/L is the ergodic sum capacity using Scheme
2, and I(β∗/N, ρ/N, N, L) is the ergodic sum capacity of Scheme
3.

In practice, the threshold INR β∗ can be tabulated for different
network parameters such as the number of links and the number of
antennas of each node. Once this table is available, it can be looked
up in real time to determine whether each node should be scheduled
under Scheme 2 or Scheme 3.

6. CONCLUSIONS

We have proposed a space-time power scheduling approach for mul-
tiple distributed MIMO links assuming no CSI at transmitting nodes.
This approach leads to Scheme 1 which is a space-time optimal
power schedule. With Scheme 1 as the optimal benchmark, we have
observed that Scheme 2, an orthogonal isotropic power schedule
(such as TDMA), is optimal when the INR is larger than a threshold,
and Scheme 3, a uniform isotropic power schedule, is optimal when
the INR is less than the threshold. The threshold INR value can be
computed based on the network topology. This useful property has
been observed from a symmetric and circular network. Whether or
nor such a simple property holds for asymmetric networks remains
to be investigated.
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