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ABSTRACT

This paper provides performance analysis of multiband OFDM
UWB system that takes into consideration the effect of in-
tersymbol interference and imperfect frequency and timing
synchronization. The system performance is analyzed under
UWB multipath fading channels, as speci ed in the IEEE
802.15.3a channel standard. Average signal-to-noise ratio is
rst derived for the system. Then an approximation tech-
nique is employed to obtain a closed-form average bit er-
ror probability that provides a profound understanding of the
performance of the multiband OFDM UWB system. Simu-
lation results validate the theoretical analysis.
Index Terms— Ultra-wideband, OFDM, bit error prob-

ability, frequency and timing synchronization, intersymbol
interference

1. INTRODUCTION

Ultra-wideband (UWB) has emerged as a technology for short-
range, high data-rate communications. To exploit the un-
licensed 7.5GHz bandwidth (3.1 - 10.6 GHz), two techni-
cal approaches have mainly been proposed: direct-sequence
UWB relating to single-band systems and multiband UWB.
The dominant candidate of the multiband approach employs
orthogonal frequency division multiplexing (OFDM) tech-
nique, the so-called MB-OFDM UWB [1]. In this paper, we
consider MB-OFDM UWB.
The system supports 10 data rates from 53.3 MHz to

480 MHz [1], which are grouped into three data-rate modes,
namely high-rate, middle-rate, and low-rate based on overall
spreading gain factors of 1, 2, and 4. Four UWB standard
channel models, denoted as CM1, CM2, CM3, and CM4
speci ed in the IEEE 802.15.3a [2] are derived from S-V
model [3]. The channel models are characterized by cluster
and ray arrival rates and decay factors.
Performance analysis of MB-OFDM UWB system has

been an area of considerable interest. A number of system
performances has been published in the literature (see [4],
[5], [6]). All the existing work assumed perfect frequency
and timing synchronization. The channel multipath delays
were also assumed to t inside OFDM cyclic pre x and hence
the system would not suffer intersymbol interference (ISI).
In practice, the delays, however, can exceed the length of the
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cyclic pre x, causing ISI. Moreover, OFDM technique is also
sensitive to imperfect frequency and timing synchronization.
This paper thoroughly analyzes the performance of MB-

OFDM UWB system in UWB channel models with ISI and
imperfect synchronization. Average signal-to-noise ratio (SNR)
is rst derived for the system. Then an approximation tech-
nique is employed to obtain a closed-form average bit error
probability that provides a profound understanding of the
performance of the multiband OFDM UWB system. The
simulation results validate the theoretical analysis.

2. CHANNEL AND SYSTEMMODELS
2.1. Channel Model
UWB standard channel models speci ed in the IEEE 802.15.3a
[2] are derived from S-V model [3]. We can rewrite channel
impulse response for CM1 as

h(t) = α0,0δ(t) +
K∑

k=1

αk,0δ(t− τk,0) +
L∑

l=1

α0,lδ(t− Tl)

+
L∑

l=1

K∑
k=1

αk,lδ(t− Tl − τk,l) (1)

where αk,l’s are multipath gain coef cients, Tl and τk,l are
the delay of the lth cluster and the kth ray in the lth cluster.
The cluster and ray arrival times Tl’s and τk,l’s are modelled
as time of arrivals in Poisson processes with rate Λ and λ
(where λ > Λ) [2], respectively. Multipath gain coef cients
αk,l’s are modelled as statistically independent, zero-mean,
complex Gaussian random variables whose variance is [2]

Ωk,l = E
{|αk,l|2 | Tl, τk,l

}
= Ω0,0e

−Tl
Γ −

τk,l
γ (2)

where Γ and γ are cluster and ray decay factors, respectively.
Channel impulse response for CM2, CM3, and CM4 takes
the form of Eq. (1) without the rst two terms.

2.2. Signal Model
The received signal is r(t) =

∑∞
i=−∞ yi(t) + n(t) where

yi(t) =
1
TS

N−1∑
n=0

cn,i

L∑
l=0

K∑
k=0

αk,l

× g(t− iT ′S − Tl − τk,l)e
j2πn(t−iT ′S−Tl−τk,l)

TS (3)

is the channel response corresponding to OFDM symbol xi

and n(t) is additive white Gaussian noise (AWGN). In Eq.
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(3), TS and T ′S are the durations of the useful and transmit-
ted OFDM symbol, respectively. At the receiver, we con-
sider imperfect frequency and timing synchronization with a
carrier-frequency offset Δf and a timing error τ . Accord-
ingly, the demodulated signal ĉm,i is

ĉm,i =
∫ iT ′S+TC+TS−τ

iT ′S+TC−τ

r(t)e−j2π(ft,m+Δf)(t−iT ′S)dt (4)

where ft,m is the transmitter carrier frequency corresponding
to the subcarrier m. Let ε = Δf

1/TS
= ΔfTS be relative

carrier-frequency offset. Then it can be shown that
ĉm,i = cm,iHm + ĉICI

m,i + ĉISI
m,i + nm,i (5)

where
Hm = wεTC w−(m+ε)τ

×
[

l0∑
l=0

K∑
k=0

αk,lw
mXk,l

(
e−j2πεwεXk,l − 1

)
−j2πε

+
L∑

l=l0+1

K∑
k=0

αk,lw
mXk,l

(
e−j2πε − wεXk,l

)
−j2πε

]
(6)

ĉICI
m,i =

∑
n �=m

cn,iw
−(n−m−ε)TC w−(m+ε)τ

×
[

l0∑
l=0

K∑
k=0

αk,l

(
e−j2πεw(m+ε)Xk,l − wnXk,l

)
j2π(n−m− ε)

+
L∑

l=l0+1

K∑
k=0

αk,l

(
e−j2πεwnXk,l − w(m+ε)Xk,l

)
j2π(n−m− ε)

]

(7)

ĉISI
m,i =

N−1∑
n=0

cn,i−1w
−(n−m−ε)TC w−(m+ε)τ

×
L∑

l=l0+1

K∑
k=0

αk,l

j2π(n−m− ε)

×
(
w(m+ε)(Xk,l−TC−TG) − wn(Xk,l−TC−TG)

)
(8)

are fading term, intercarrier interference (ICI), and ISI, re-
spectively and nm,i ∼ CN(0, N0) is AWGN. In the above
equations, we have de ned Xk,l = Tl + τk,l + τ and w =

e
−j2π

TS for notational convenience.
The following assumptions are employed in this perfor-

mance analysis.
Assumption 1: τ ∈ (−TC , TC). For large timing error

τ , the performance possesses very high error probability and
hence needs not to be considered.
Assumption 2: Tl + τk,l ≤ TS for all k, l. Through the

generation of the channel, no delay is larger than the symbol
duration TS .
Assumption 3: Let X = Tl + τk,l − T and l0 = �ΛT �

for a deterministic time T and cluster arrival rate Λ. �.� rep-
resents oor function. l0 represents the average number of

cluster arrivals at time T . Then X > 0 ⇔ l ≥ l0 + 1.
This assumption implies that if Tl < T , then all rays in the
lth cluster arrive assumedly at a time less than T ; in other
words, Tl + τk,l < T ∀k.
Assumption 4: Transmitted symbols cn,i’s are indepen-

dent and identically distributed (i.i.d.) with symbol energy
Es. Since two bits form a quadrature phase-shift keying
(QPSK) symbol, Es = 2Eb where Eb is the bit energy.
Assumption 5: The channel, the transmitted symbols,

and AWGN are mutually independent.
The assumptions simplify the derivation process; how-

ever, they still maintain the nature of the problem.

3. AVERAGE SIGNAL-TO-NOISE RATIO

The average SNR per QPSK symbol can be de ned as

γs(ε, τ) � Esσ
2
H

σ2
C + σ2

S +N0
(9)

where σ2
H , σ2

C , and σ2
S are variances of fading term, ICI,

and ISI, respectively, Es is symbol energy, andN0 is AWGN
variance. Since the energy per bit Eb = 1

2Es, the average
SNR per bit γb(ε, τ) = 1

2γs(ε, τ). We will use γb(ε, τ) to
evaluate the system performance.
Because transmitted symbols cn,i’s and multipath gain

coef cients αk,l’s are zero-mean, Hm, ĉICI
m,i , and ĉISI

m,i are
also zero-mean. Thus σ2

H = E
{|Hm|2

}
, σ2

C = E
{|ĉICI

m,i |2
}
,

and σ2
H = E

{|ĉISI
m,i |2

}
. Using Ass. 4 and 5 and Eq. (2) for

multipath gain coef cients αk,l, we are able to show that

σ2
H =

1
4π2ε2

l0∑
l=0

K∑
k=0

E
{
Ω0,0e

−Tl
Γ −

τk,l
γ

× [
2− (

e−j2πεwεXk,l + ej2πεw−εXk,l
)]}

+
1

4π2ε2

L∑
l=l0+1

K∑
k=0

E
{
Ω0,0e

−Tl
Γ −

τk,l
γ

× [
2− (

e−j2πεw−εXk,l + ej2πεwεXk,l
)]}

(10)

σ2
C = Es

∑
n �=m

1
4π2(n−m− ε)2

[
l0∑

l=0

K∑
k=0

E {Ω0,0

× e−
Tl
Γ −

τk,l
γ

[
2−

(
e−j2πεw−(n−m−ε)Xk,l

+ ej2πεw(n−m−ε)Xk,l

)]}
+

L∑
l=l0+1

K∑
k=0

E {Ω0,0

× e−
Tl
Γ −

τk,l
γ

[
2−

(
e−j2πεw(n−m−ε)Xk,l

+ ej2πεw−(n−m−ε)Xk,l

)]}]
(11)

σ2
S = Es

N−1∑
n=0

1
4π2(n−m− ε)2

L∑
l=l0+1

K∑
k=0

E {Ω0,0

× e−
Tl
Γ −

τk,l
γ

[
2−

(
w(n−m−ε)(Xk,l−TC−TG)
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+ w−(n−m−ε)(Xk,l−TC−TG)
)]}

. (12)

To evaluate these variances, we rst separate the expec-
tations in term of Tl and τk,l since these random variables
are statistically independent. Then we employ the moments
of these random variables for the expectations to obtain the
expressions of these quantities. Note that Tl and τk,l are l−
and k−Erlang random variables. Due to the space limitation,
the derivation is not presented in this paper; however, it will
be provided if required.

4. AVERAGE BIT ERROR PROBABILITY
Let zm � ĉICI

m,i + ĉISI
m,i + nm,i. Then Eq. (5) can be rewrit-

ten as ĉm,i = cm,iHm + zm. We model ĉICI
m,i and ĉISI

m,i as
Gaussian random variables whose mean is zero and variance
is σ2

C and σ2
S , respectively. Consequently, zm ∼ CN(0, σ2

Z)
where σ2

Z = σ2
C + σ2

S +N0.
Ten data rates in the UWB system are grouped into three

data-rate modes based on overall spreading gain factors of 1,
2, or 4 [1]. The three cases share the same receiving model:
ĉ = cm,ih + z where ĉ and h are vectors comprising de-
modulated signals ĉm,i and fading termsHm associated with
ĉm,i, respectively while z ∼ CN(0, σ2

ZI) is the noise vector.
The average bit error probability can be shown as

Pb ≈ pm
m−1∑
k=0

(
m− 1 + k

k

)
(1− p)k (13)

where m is the gain factor and p = 1
2

(
1−

√
γρ

1+γρ

)
with

γρ � E {ρ} corresponding tom = 1 and

ρ = ‖h‖2 Eb

σ2
Z

. (14)

Eq. (13) is resulted from the fact that ρ is approximately
chi-square distributed with 2m degrees of freedom. In what
follows, we will present the proof for the case ofm = 1. The
same calculation steps can be used to get the results for other
cases.
In case of m = 1, ĉ = ĉm,i, h = Hm, and z = z. Thus

ρ = Eb

σ2Z
|Hm|2. From Eq. (6), we rewrite the fading term as

Hm =
1

−j2πε
wεTC w−(m+ε)τwH

T a (15)

where w =
[
wm(T0+τ0,0+τ), wm(T0+τ0,1+τ) , ...,

wm(TL+τK,L+τ)
]T , T = diag

(
e−j2πεwε(T0+τ0,0+τ) − 1

, ...,e−j2πεwε(Tl0+τK,l0+τ) − 1, e−j2πεwε(Tl0+1+τ0,l0+1+τ)

−1, ..., e−j2πε wε(TL+τK,L+τ) − 1
)
and a = [α0,0, α0,1, ...,

αK,L]
T . Because αk,l ∼ CN(0,Ωk,l), a = Ω

1
2b where

Ω
1
2 Ω

1
2 = Ω = diag (Ω0,0, Ω0,1, ..., ΩK,L) andb =

[
β′0,0,

β′0,1, ..., β′K,L

]T where β′k,l ∼ CN(0, 1). Consequently,

ρ =
Eb

σ2
Z

1
4π2ε2

bHΩ
1
2TwwH

TΩ
1
2b. (16)

Let us de ne Ψ = Ω
1
2TwwH

TΩ
1
2 . Since Ψ is a non-

negative de nite Hermitian matrix, it can be expressed as
Ψ = VΛV

H where Λ is an eigenvalue matrix and V is a
unitary matrix. Since rank(Ψ) ≤ min

{
rank(Ω

1
2 ), rank(T),

rank(w)} where rank(Ω 1
2 ) = rank(T) = (K + 1)(L + 1)

and rank(w) = 1, there exists in Λ only one nonzero eigen-
value, which can be evaluated as eig(Ψ) = D, and hence

ρ =
Eb

σ2
Z

1
4π2ε2

D|β|2 (17)

where β ∼ CN(0, 1) and

D =
l0∑

l=0

K∑
k=0

Ω0,0e
−Tl

Γ −
τk,l

γ
[
2− (

e−j2πεwεXk,l

+ ej2πεw−εXk,l
)]
+

L∑
l=l0+1

K∑
k=0

Ω0,0e
−Tl

Γ −
τk,l

γ

× [
2− (

e−j2πεw−εXk,l + ej2πεwεXk,l
)]

. (18)

Eq. (17) reveals that ρ is not a chi-square random variable
with two degrees of freedom as in the case of Rayleigh fading
channel because of the Tl and τk,l. To solve the problem, we
employ the approximation approach in [6]. From Eq. (14), ρ
has a quadratic form, and thus can be rewritten as [7]

ρ ≈ Eb

σ2
Z

S∑
s=1

eigs(Φ)|μs|2 (19)

where μs ∼ CN(0, 1) and S is the rank of matrix Φ �
E

{
hhH

}
. In case of gain factorm = 1, Φ = σ2

H , which is
the variance of the fading term. Consequently,

ρ ≈ Ebσ
2
H

σ2
Z

|μ|2. (20)

Since μ ∼ CN(0, 1), ρ approximately is chi-square-distributed
with two degrees of freedom. Eq. (20) also reveals that the
expectation of ρ: γρ = γb(ε, τ), the average SNR per bit.
Substituting this expectation into Eq. (13), we get the aver-
age bit error probability for this case.

5. NUMERICAL AND SIMULATED RESULTS
We perform simulations with the OFDM system and the chan-
nel characteristics following [1]. For demonstration purpose,
we present the numerical results in CM2 and the simulation
result in CM1. In Figure 1, we plot the average bit error
probability of the OFDM system against the SNR per bit for
the low-rate mode and various timing synchronization errors
to illustrate the OFDM system performance in the imperfect
timing synchronization. In the gure, T = TS

N where TS is
the useful OFDM duration and N is the number of OFDM
subcarriers. The gure reveals that positive timing errors al-
ways worsen the system performance while small negative
timing errors can improve it. In the gure, the 3T line is
above the 0T one while the lines associated with negative T
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Fig. 1. Performance of MB-OFDM UWB system with timing syn-
chronization errors.

are below the 0T one. Also for negative τ , the increment of
its magnitude reduces the performance improvement. In the
gure, among the lines with negative T , the−6T line has the
best performance.
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Fig. 2. Performance of MB-OFDM UWB system: timing error vs.
frequency error.

In Figure 2, we compare the system performance between
timing synchronization and frequency synchronization. The
gure reveals clearly that frequency synchronization is more
important than timing synchronization. The performance of
the system with frequency synchronization error degrades
much faster than that of the system with time synchroniza-
tion error does.

0 2 4 6 8 10 12 14 16 18 20
10-3

10-2

10-1

100

E
b
/N

0
 (dB)

BE
R

Analysis
Simulation

Fig. 3. Performance of MB-OFDM UWB system: simulation vs.
analysis.

The simulation result is plotted together with the numer-
ical result in Figure 3. So far, we are able to obtain only
the simulation average bit error probability for the OFDM

system for the high-rate mode in the case of channel model
CM1 and perfect synchronization. The simulation consumes
an enormous amount of time. The reason is due to the high
average number of channel multipath delays. The numbers of
delays for CM1, CM2, CM3, and CM4 are 295, 765, 1460,
and 3930 in average, respectively. In addition, the computa-
tion of the demodulated signal ĉm,i requires the integration
of the received signal r(t), as we see in Eq. (4). The inte-
gration is computed numerically. The whole process really
consumes a great amount of time. For channel models CM2,
CM3, and CM4, the computer cannot even handle it.
Although we have the limitation to the computing re-

sources, Figure 3 shows that the simulation result matches
the numerical result very well. The simulation validates our
performance analysis.

6. CONCLUSIONS
We provide the performance analysis of MB-OFDM UWB
system in the four IEEE 802.15.3a channel models under im-
perfect frequency and timing synchronization and ISI. The
results show that small negative timing synchronization error
can improve the system performance. In addition, frequency
synchronization is more important than timing synchroniza-
tion since frequency error degrades the system performance
much more than timing error does. Although we are able to
obtain only the simulation result for the high-rate mode in
CM1 and perfect frequency and timing synchronization, the
simulation validates our theoretical analysis.
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