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ABSTRACT

This paper1 focuses on the evaluation of performance limits for ultra-
wideband communications in terms of constellation-constrained ca-
pacity. The major drawback of most of the existing capacity mea-
sures is that an exact and closed-form expression cannot be easily
obtained. As a result, evaluation of these capacity measures must
resort to numerical methods. In this paper, however, closed-form up-
per bounds for the constellation-constrained capacity of PPM mod-
ulation are proposed for both coherent and non-coherent receivers.
The tightness of the proposed bounds is evaluated under the IEEE
802.15.3a/4 channel models where a good match is observed, in par-
ticular, for the low-SNR regime.

Index Terms— Ultra-wideband, PPM, capacity, bounds.

1. INTRODUCTION

Short-range wireless communication has become an essential part
of everyday life thanks to the enormous growth in the deployment
of wireless local/personal area networks. However, traditional wire-
less technology cannot meet the requirements of upcoming wireless
services that demand high-data rates to operate. This issue has moti-
vated an unprecedented resurgence of ultra-wideband (UWB) tech-
nology, a transmission technique that is based on the emission of
extremely-short pulses with a very low power spectral density. Be-
cause of the particular characteristics of UWB signals, very high data
rates can be provided with multipath immunity and high penetration
capabilities.

Nevertheless, formidable challenges must be faced in order to
ful ll the expectations of UWB technology. One of the most im-
portant challenges is to cope with the overwhelming distortion intro-
duced by the intricate propagation physics of UWB signals [1]. In
addition to this, UWB antennas behave like direction-sensitive lters
such that the signal driving the transmitting antenna, the electric far
eld, and the signal across the receiver load may differ considerably
in waveshape and spectral content [2]. As a result, matched lter
correlation is dif cult to be implemented at the receiver unless high
computational complexity is dedicated for obtaining perfect wave-
shape estimation. Thus, UWB receivers may be implemented under
a coherent or non-coherent approach depending on a tradeoff be-
tween complexity and performance.

On the one hand, coherent receivers are optimal in the sense that
they have perfect knowledge of the end-to-end channel response.
This channel state information is usually obtained by using chan-
nel estimation techniques prior to the symbol detection stage. With
proper channel knowledge, coherent receivers consist of a traditional
correlator-based architecture where a replica of the transmitted pulse
is used to implement a matched ltering or RAKE receiver [3]. On

1This work has been partially nanced by the Spanish/Catalan Science
and Technology Commissions and FEDER funds from the European Com-
mission: TIC2003-05482 and 2005SGR-00639.

the other hand, non-coherent receivers do not perform channel es-
timation and thus, they can be seen as a low-cost and low-power
alternative to the more complex and computationally demanding co-
herent receivers [4]. The save in hardware complexity is especially
important because channel estimation usually requires about 60 %
of the total number of gates in an UWB coherent receiver [5].

From the above considerations, the main purpose of this pa-
per is to analyze the asymptotic performance of both coherent and
non-coherent UWB communication systems operating over multi-
path fading channels. To this end, the conditions for which an ar-
bitrarily small error probability is achieved are analyzed by using
the concept of constellation-constrained capacity. Since we focus
on digital communication systems, constellation-constrained capac-
ity is adopted because it provides a benchmark on the best rate it can
be achieved with a given discrete input distribution [6]. This is in
contrast with the traditional de nition of capacity where continuous
inputs are considered. One of the major problems when dealing with
capacity measures is that rather dif cult expressions are encountered
and their evaluation must resort to numerical methods. In order to
circumvent this limitation, this paper presents tight upper bounds
for the constellation-constrained capacity of both coherent and non-
coherent receivers. The major contribution is that simple and closed-
form expressions are provided that tightly model the exact behavior
of constellation-constrained capacity.

The paper is structured as follows. The signal model is presented
in Section 2 and the notion of constellation-constrained capacity is
introduced in Section 3. The proposed closed-form upper bounds for
both coherent and non-coherent receivers are derived in Section 4.
Finally, simulation results are enclosed in Section 5 and conclusions
are drawn in Section 6.

2. SIGNAL MODEL

The mostly adopted modulation formats for UWB communication
systems are pulse-amplitude modulation (PAM) and pulse-position
modulation (PPM). On the one hand, PAM requires perfect channel
state information in order to resolve the ambiguity introduced by
the channel in the amplitude of the received signal. On the other
hand, PPM can either be adopted in the presence or in the absence
of channel state information. That is, PPM can be adopted by either
coherent or non-coherent receivers. For this reason, PPM will be
considered in the sequel.

When focusing on PPM, several variations are found including
multipulse PPM (MPPM), overlapping PPM (OPPM) and differen-
tial PPM (DPPM), among other. Interestingly, they all can be re-
garded as a constrained version of on-off keying (OOK) modulation.
In OOK a single bit is transmitted per channel use. That is, a pulse
is transmitted within the symbol duration for representing ”1” and
no pulse is transmitted for representing ”0”. An important point to
be remarked is that, since PPM, MPPM, OPPM and DPPM are each
a constrained version of OOK modulation, the capacity of uncon-
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strained OOK becomes the upper bound on the capacity of these
pulse-position modulation formats. As it is shown in [7], the capac-
ity of PPM is found to be near that of OOK for the low-SNR regime.
Consequently, no other constrained version of OOKmodulation (e.g.
MPPM, OPPM or DPPM) can offer a signi cant improvement over
traditional PPM for this region. Since most UWB communication
systems must operate in the low-SNR regime because of the strin-
gent spectral regulations, we will not consider MPPM, OPPM nor
DPPM hereafter but only the standard and traditional PPM.

Let us consider the following real-valued discrete-time signal
model for the received PPM signal,

y = Hxi + w (1)

where y ∈ �Nss×1 is the vector of received samples with Nss the
number of samples per symbol. The vector w ∈ �Nss×1 incor-
porates the Gaussian contribution from both the thermal noise and
possible multiple access interference with Cw

.
= E

[
wwT

]
. The

(P × 1) vector xi corresponds to the i-th PPM symbol from the
PPM codebook X : {x0,x1, . . . ,xP−1}. Only the i-th entry in xi

is active. That is, [xi]i = 1 and [xi]j = 0 for all j �= i.
The shaping matrix H ∈ �Nss×P incorporates the end-

to-end channel response between transmitter and receiver. The
columns of the shaping matrix H are indicated by hi with H =
[h0,h1, . . . ,hP−1], and they contain time-shifted replicas of the
end-to-end channel response with the time-shift equal to NΔ sam-
ples. The end-to-end channel response has a maximum length of
Ng samples. Then, by taking into consideration the maximum delay
spread of the channel and the maximum PPM time-shift, a guard in-
terval is introduced in order to avoid intersymbol interference with
the next received symbol. Since no time-hopping is assumed here
for the sake of simplicity, the condition for avoiding intersymbol in-
terference is Nss ≥ Ng + (P − 1)NΔ. Later on, it will be useful
to incorporate the Ng samples of the channel response into a vector
indicated herein by g, with g ∈ �Ng×1. Indeed, g is included in the
columns of the shaping matrixH as follows,

hi =
[
0, 0, . . . , 0, 0︸ ︷︷ ︸

iNΔ

,g
T
, 0, 0, . . . , 0, 0︸ ︷︷ ︸

Nss−iNΔ−Ng

]T

. (2)

Two different approaches are adopted in this paper depending on
whether coherent or non-coherent receivers are considered.

• Coherent approach: The end-to-end channel response is as-
sumed to be perfectly known at the receiver side so that the
only nuisance parameter is the Gaussian contribution from
the noise. As a result, the probability density function of the
received signal y conditioned on the transmission of the PPM
codeword xi and a given channel response g becomes

fcoh (y|xi;g) =
exp

(
− 1

2
(y − hi)

T
C−1

w (y − hi)
)

(2π)Nss/2 det1/2 (Cw)
.

(3)

• Non-coherent approach: The end-to-end channel response
is assumed to be an unknown random Gaussian process.
Since the unknown end-to-end channel response and the noise
are statistically independent, the probability density function
of the received signal y conditioned on the transmission of
the PPM codeword xi is

fnon−coh (y|xi) =
exp

(
− 1

2
yT (Cw + Chi

)−1
y
)

(2π)Nss/2 det1/2 (Cw + Chi
)

(4)

withChi

.
= E

[
hih

T
i

]
the covariance matrix for the received

waveform under the hypothesisHi : x = xi.

Similarly to [2] and the references therein, the noise contribution
will be assumed to be white. This assumption is well justi ed by
the low duty cycle of UWB transmissions and the adoption of time
hopping mechanisms for multiple access.

3. CONSTELLATION-CONSTRAINED CAPACITY

For the case of digital communication systems, the so-called
constellation-constrained capacity establishes a benchmark on the
achievable rates with a given discrete input distribution [6]. The
constellation constrained capacity is indicated herein as Cc and it is
based on the original de nition of capacity where the maximization
over the input distribution is omitted. That is,

Cc

.
=

∑
x

∫
y

f(x,y) log
2

f(x,y)

f(x)f(y)
dy (bits/channel use). (5)

For the case of P -ary modulation with equiprobable transmitted
symbols we have that p(x = xi) =

1

P
. Then, after some straightfor-

ward manipulations, the contellation-constrained capacity is found
to be given by a more insightful expression as follows,

Cc = log
2
P −

1

P

P−1∑
i=0

Ey|xi

[
log

2

P−1∑
j=0

Λj,i(y)

]
(6)

where Λj,i(y) is the likelihood ratio for deciding between the hy-
pothesisHi : x = xi and the hypothesisHj : x = xj . That is,

Λj,i(y)
.
=
f (y|x = xj)

f (y|x = xi)
. (7)

The result in (6) provides a valuable interpretation of the notion of
channel capacity since the argument of the log

2
(·) operator is in-

deed a sum of likelihood ratios. In the sequel, the constellation-
constrained capacity in (6) will be analyzed for coherent and non-
coherent UWB receivers and closed-form upper bounds will be pro-
vided to avoid numerical evaluation.

4. CLOSED-FORM UPPER BOUNDING

4.1. Coherent Receivers

Since channel state information is available in coherent receivers, the
likelihood ratio in (6) must be evaluated with the probability density
function in (3). The result is found to be given by

Λj,i(y,g)= exp

(
1

2σ2
w

[
2 (hj − hi)

T
y + h

T
i hi − h

T
j hj

])
. (8)

with E
[
wwT

]
= σ2

wI and σ2
w the noise power. According to

(8), the likelihood ratio for coherent detection depends on the par-
ticular realization of the end-to-end channel response g contained
within hi. However, the channel response may vary between differ-
ent transmissions and so does the capacity. Therefore, a meaningful
measure for the channel capacity requires the expectation over the
channel statistics. This leads to the so-called ergodic capacity de-
ned as Cc | coh

.
= Eg [Cc]. In that case,

Cc | coh = log
2
P −

1

P

P−1∑
i=0

Eg, w

[
log

2

P−1∑
j=0

exp

(
−
‖hi − hj‖

2

2σ2
w

)

× exp

(
1

σ2
w

(hi − hj)
T

w

) ]
(9)

where y has been substituted by the signal model y = hi +w to be
consistent with the conditioned expectation Ey|xi

[·] in (6).
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The main problem with the result in (9) is that an exact and
closed-form expression is hard to nd. The main dif culty is due
to the discrete nature of the input alphabet which makes the argu-
ment of the log

2
(·) to consist on the sum of exponential terms. The

problem of nding a simple expression for the logarithm of a sum of
exponentials is a recurrent problem, for instance, in the eld of turbo
decoding. In particular, the so-called max-log MAP algorithm for
turbo decoding is based on the approximation log

(∑
i exp zi

)
≈

maxi zi. However, the max operator is still a nonlinear operator
which does not help in providing a closed-form expression for (9).

Interestingly, a closed-form upper bound for the constellation-
constrained capacity in (9) can be obtained when orthogonal PPM
signaling is considered. Orthogonal signaling can directly be ob-
tained by properly designing the transmitted signal such that non-
overlapping time intervals are assigned to different PPM symbols.
However, even when there exists some overlapping, the noise-like
structure of the received waveforms makes the cross-correlation be-
tween different PPM hypothesis to be almost negligible.

With orthogonal signaling, the Euclidean distance in (9) turns
out to be given by ‖hi − hj‖

2 = 2Es for i �= j, with Es
.
= ‖g‖2

the energy of the received waveform or, equivalently, the energy-per-
symbol2. Then, the constellation-constrained capacity in (9) can be
simpli ed as follows,

Cc | coh = log
2
P −

1

P

P−1∑
i=0

Eg,w

[
log

2

(
1 + exp (−ρ)

× exp

(
1

σ2
w

h
T
i w

) ∑
j �=i

exp

(
−

1

σ2
w

h
T
j w

) )]
(10)

where the symbol-SNR ρ is de ned as ρ .
= Es

σ2
w

= 2Es

N0
with

Sw(f) =
N0

2
the double-sided noise spectral density. Next, by con-

sidering the law of large numbers in (10),∑
j �=i

exp

(
−

1

σ2
w

h
T
j w

)
→ (P − 1)Ew

[
exp

(
−

1

σ2
w

h
T
j w

)]
.

(11)
The assumption above can be reasonably adopted provided that P is
suf ciently large and taking into consideration that the product hT

j w

does not vary signi cantly for different j. After some mathematical
manipulations, the required expectation is found to be given by

Ew

[
exp

(
−

1

σ2
w

h
T
j w

)]
= exp

(
1

2σ2
w

‖hj‖
2

)
= exp

(
ρ

2

)
.

(12)
Note that the result in (12) is indeed an exact result. No approxima-
tions were made at this point. Substituting the result in (12) into the
constellation-constrained capacity in (10) results in

Cc | coh = log
2
P −

1

P

P−1∑
i=0

Eg,w

[
log

2

(
1 + (P − 1) exp

(
−
ρ

2

)

× exp

(
1

σ2
w

h
T
i w

) )]
. (13)

The expression in (13) still requires numerical evaluation. However,
a simple and closed-form expression can be obtained by introducing
the Jensen’s inequality. To this end, let us de ne the function

g (hi,w)
.
= log

2

(
1 + (P − 1) exp

(
−
ρ

2

)
exp

(
1

σ2
w

h
T
i w

))
.

(14)
The function g(hi,w) is a convex ∪ function. Consequently, the
Jensen’s inequality results in

Ew [g (hi,w)] ≥ g (hi,Ew [w]) = log
2

(
1 + (P − 1) exp

(
−
ρ

2

))
2For simplicity, frame repetition is not considered in this study.

because of the zero mean of the Gaussian noise, Ew [w] = 0. Fi-
nally, substitution of the Jensen’s inequality results in the following
closed-form upper-bound for the constellation-constrained capacity
of orthogonal PPM signaling.

Cc | coh ≤ log
2
P − log

2

(
1 + (P − 1) exp

(
−
ρ

2

))
. (15)

4.2. Non-Coherent Receivers

For the case of non-coherent receivers, the end-to-end channel re-
sponse is now assumed to be a randomGaussian process with covari-
ance matrix Cg = E

[
ggT

]
. When the pulse-position modulation

comes into action, the received waveform g creates a set of time-
shifted replicas {h0,h1, . . . ,hP−1} as indicated in the signal model
in Section 2. These received waveforms hk for k = 0, 1, . . . , P − 1
are characterized by the multivariate Gaussian probability density
function in (4) so that the likelihood ratio Λj,i(y) becomes,

Λj,i(y)=
det1/2 (Cw + Chi

)

det1/2
(
Cw + Chj

) exp
(
− 1

2
yT

(
Cw + Chj

)−1
y
)

exp
(
− 1

2
y (Cw + Chi

)−1
y
) .(16)

Since white Gaussian noise is being considered, the expression
above can be simpli ed because the determinants on the form
det (Cw + Chi

) turn out to be independent of i. This statement
can easily be proved by taking into consideration the properties of
the determinant of block partitioned matrices. Then,

Λj,i(y) = exp

(
1

2
y

T
[(
σ

2

wI + Chi

)−1

−
(
σ

2

wI + Chj

)−1
]
y

)
. (17)

With the above considerations, the constellation-constrained ca-
pacity can be upper bounded as follows,

Cc | no−coh =

log
2
P −

1

P

P−1∑
i=0

Ey|xi

[
log

2

P−1∑
j=0

exp

(
1

2
y

T
[ (
σ

2

wI + Chi

)−1

−
(
σ

2

wI + Chj

)−1
]
y

)]
(18)

≤ log
2
P −

1

P

P−1∑
i=0

log
2

P−1∑
j=0

exp

(
1

2
Tr

([ (
σ

2

wI + Chi

)−1

−
(
σ

2

wI + Chj

)−1
] (
σ

2

wI + Chi

) ))
. (19)

In (19), the Jensen’s inequality was applied over the random matrix
yyT , that is,

Ey|xi

[
Cc | no−coh

(
yy

T
)]

≤ Cc | no−coh

(
Ey|xi

[
yy

T
])

= Cc | no−coh

(
σ

2

wI + Chi

)
.(20)

To be more speci c, it is interesting to particularize the result
in (19) to the case of UWB received waveforms with uncorrelated
scattering (US). These waveforms are obtained when adopting most
of the channel models in the IEEE802.15.3a/4 standards. The ad-
vantage of US is that covariance matrices Chi

turn out to be di-
agonal. Thus, signi cant simpli cations can be incorporated in
(19). After some straightforward manipulations, the upper bound
for the constellation-constrained capacity of non-coherent receivers
with uncorrelated received samples is given by

C
US

c | no−coh ≤ log
2
P (21)

−
1

P

P−1∑
i=0

log
2

P−1∑
j=0

exp

(
−
1

2

Nss−1∑
k=0

γi(k)− γj(k)

σ2
w + γj(k)

)

with γi(k) = [Chi
]k,k the k-th entry of the power delay pro le

(PDP) of the received waveform under the hypothesisHi : x = xi.
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Fig. 1. Constellation-constrained capacity for UWB PPM coherent
receivers.

5. NUMERICAL RESULTS

In this section, the proposed closed-form upper bounds are compared
with the exact constellation-constrained capacity for both coherent
and non-coherent receivers. The exact constellation-constrained ca-
pacity in (9) and (18) is numerically evaluated with UWB signals
propagating through some of the IEEE 802.15.3a/4 channel mod-
els in [8] and [9], respectively. For non-coherent receivers, only the
channel model CM8 from the IEEE 802.15.4 is considered. The rea-
son is that it assumes an industrial environment with NLOS propaga-
tion where the small-scale fading statistics are found to be modeled
by the traditional Rayleigh distribution. Thus, the received samples
can still be modeled by random Gaussian variables as in (4).

The results are shown in Fig. 1 and Fig. 2 for the case
of coherent and non-coherent receivers, respectively, with P =
{2, 8, 16, 64}. For both simulation scenarios, the sampling time is
set to Ts = 0.5 ns, the symbol duration is T = 1.5 μs and the PPM
time-shift is TΔ = 15 ns. The delay spread of the simulated chan-
nel models is larger than the PPM time-shift so that some degree of
overlapping is experienced. However, the randomness introduced by
the propagation channel makes the cross-correlation between time-
shifted waveforms to be almost negligible. To proof this fact, the ex-
act capacity for orthogonal PPM in coherent receivers is also plotted
in Fig. 1. This capacity was derived in [10] and requires numerical
evaluation. When comparing the capacity for the simulated chan-
nel models with the exact capacity for orthogonal signaling in [10],
both results do coincide. Therefore, we are virtually dealing with an
orthogonal PPM signaling despite of the waveform overlapping.

From the observation of Fig. 1 and Fig. 2, it is found that the
proposed closed-form upper bounds provide a really tight t for the
low-SNR regime. This is especially important, since this is the re-
gion where most UWB communication systems are forced to operate
due to stringent spectral regulations. For the medium- to high-SNR,
a good match is observed with just an slight deviation when entering
the capacity saturation region.

6. CONCLUSIONS

Closed-form upper bounds have been presented for the constellation-
constrained capacity of UWB communication systems operating
with PPM modulation. Both coherent and non-coherent receivers
are considered and simulation results are provided to show the tight-
ness of the proposed bounds. Interestingly, an excellent match to the
exact capacity is achieved for the low-SNR regime, the region where
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Fig. 2. Constellation-constrained capacity for UWB PPM non-
coherent receivers.

most UWB communication systems are forced to operate because of
spectral regulations.
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