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ABSTRACT

We consider distributed linear transceivers for sending a second-
order wide-sense stationary process observed by two noisy sensors
over a Gaussian multiple-access channel (MAC). We derive the min-
imum mean-square error (MSE) distributed linear transceiver. The
optimal linear transmitter exploits bandwidth expansion by repeat-
ing transmission and the transmitters at the two sensors are the same
except for a constant factor. When the source is white, uncoded
transmission is the best linear code for any SNR. But for a col-
ored source, whitening transmit lter is sub-optimal. In high SNR
regime, the magnitude response of the optimal transmission lter is
inversely proportional to fourth-root of the power spectrum of the
process (while that for the whitening lter is inversely proportional
to the square-root of the spectrum). In the special case of a single
sensor with Gaussian source, we also quantify the performance loss
of linear source-channel codes with respect to the Shannon limit.

Index Terms— Colored source, linear codes, joint source-channel
coding, multiaccess communications, sensor networks

1. INTRODUCTION

Motivated by applications in sensor networks, several researchers
are considering the transmission of dependent sources over multiple-
access channels. The problem is particularly interesting because the
source-channel separation theorem does not hold in general ([1]). In
fact, it is known that separation can be exponentially worse than joint
source-channel coding ([2]). In this paper, we look at linear (over the
real eld) joint source-channel codes. Our motivation is two-fold.
First, linear processing is simple to implement and by now there is
vast experience in ef cient hardware implementation of linear pro-
cessing. This is important to keep the sensors simple and reduce their
cost. Second, it has recently been shown that for transmitting memo-
ryless, bivariate Gaussian sources over the Gaussian MAC, uncoded
transmission is optimal below a certain SNR threshold ([3]). The
class of linear transmitters includes uncoded transmission, and it is
insightful to understand the nature of the best linear transmitters. We
note that there is extensive literature on linear transceiver optimiza-
tion for sending independent, memoryless sources over the MAC
(see [4] and references therein). In [4], the problem is formulated
as a semi-de nite program, and numerical algorithms are proposed
for the same. In contrast, in this paper we consider a single colored
source being observed by two sensors with independent noises and
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derive closed-form solution to the optimal linear transceiver. The
problem of distributed source coding of multiple independently cor-
rupted copies of a source is commonly referred to as the CEO prob-
lem ([5]). Thus in this paper we consider linear joint source-channel
codes for the CEO problem over a Gaussian MAC.

Our goal is to nd the performance limit of linear source-channel
codes for a colored source. So we consider non-causal transceivers,
which may be viewed as the limit of block transceivers as the block
size goes to in nity. Our results show that bandwidth expansion is
exploited by the optimal transmitter by repeating the transmission.
Moreover the two sensors employ the same transmit lter (except for
a scale factor), which in effect reduces the two sensor case to a single
sensor case. In the high SNR regime, the optimal transmitter lter
has magnitude response inversely proportional to the fourth-root of
the power-spectrum (while that for the whitening lter is inversely
proportional to the square-root of the spectrum). We also provide an
expression for the least MSE in the high SNR regime, which shows
that the MSE is proportional to the integral of the square-root of the
spectrum. In the case of a single sensor with Gaussian source, we
also quantify the loss with respect to the Shannon limit. For exam-
ple, in the high SNR regime, for a Gaussian rst-order Markov pro-
cess with correlation sequence 0.7|k|, the optimal linear transceiver
is about 1.4 dB from Shannon limit but it is 1.5 dB better than the
whitening lter.

The remainder of this paper is organized as follows: the precise
problem de nition is given in Section 2, the main results are given
in Section 3, and the conclusion in Section 4.

Notation: All vectors are column vectors. Superscript T denotes
transpose and superscript H denotes conjugate transpose. The mini-
mum MSE achievable using linear codes is denoted by MSE∗, while
that achievable using any code is denoted by MSE∗∗.

2. PROBLEM DEFINITION

Consider a wide-sense stationary second-order stochastic process
{st}∞t=−∞ with zero mean and covariance function c(t), c(0) = 1.
We assume that c(t) is integrable, and this implies that the process
has a continuous bounded spectral density φ(ω), ω ∈ (−π, π] ([6]).
The process is observed by two sensors in the presence of additive
noise. The observations at sensor i are

xi,t = aist + vi,t,

where ai are the signal amplitudes, the additive noise is i.i.d.N (0, σ2o)
and the noise processes are independent across the sensors. These
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observations are to be transmitted over a channel. In typical sce-
narios, the channel has more bandwidth than the source. Let B be
the bandwidth expansion factor; then for every source symbol we
are allowed B channel uses. We only consider B = 1, 2, .... The
transmitter at sensor i processes the observations through B linear
lters Hi,b(ω) arranged in parallel. The resulting B data-streams are

multiplexed into a single stream, which is then transmitted over the
channel. We note that we have restricted ourselves to time-invariant
lters. This choice is motivated by the wide-sense stationary nature

of the source. Each sensor has a transmit power constraint of P and
this leads to the following constraints on the transmit lters:Z π

−π

|Hi,b(ω)|2φ(ω)dω ≤ P, i = 1, 2; b = 1, ..., B. (1)

The data-streams at the two sensors are then transmitted over
the Gaussian MAC. The Gaussian MAC has additive i.i.d. N (0, σ2)
noise and scales the signal transmitted by sensor i by the channel
gain gi. At the receiver, the samples are passed through a demulti-
plexer that converts the single data-stream into B parallel streams. If
the transmitter lters have absolutely summable impulse responses
{hi,b,t}, then the signal on the bth output branch is given by

yb,t =

2X
i=1

giai(hi,b,t ∗ st) +

2X
i=1

gi(hi,b,t ∗ vi,t) + wb,t

where {wb,t} are i.i.d. N (0, σ2) and ∗ denotes convolution. In gen-
eral, (1) does not guarantee the existence of absolutely summable
lter impulse response. But under (1), the lter operations are well-

de ned in the Fourier domain ([6]) and we work with these more
general lters.

For xed transmitter lters, the least MSE is achieved by the
non-causal Wiener lter at the receiver. Let Yt = [y1,t, ..., yB,t]

T

and Hi = [Hi,1, ..., Hi,B ]
T . Then using the orthogonality condition

([6]), the resulting MSE is found to be

MSE =

Z π

−π

h
φ(ω)− φHsY (ω)φ

−1
Y Y (ω)φsY (ω)

i
dω (2)

where

φY Y (ω) =

 
2X

i=1

giaiHi(ω)

! 
2X

i=1

giaiHi(ω)

!H

φ(ω)

+
σ2o
2π

2X
i=1

g2i Hi(ω)H
H
i (ω) +

σ2

2π
I

(3)

and

φsY (ω) =

 
2X

i=1

giaiH
∗
i (ω)

!
φ(ω). (4)

Problem Statement: Our goal is to choose the transmit lters such
that the MSE (2) is minimized subject to the power constraints (1).
We solve this problem analytically in the next section. We denote
the minimum MSE achievable using linear codes by MSE∗.

3. MAIN RESULTS

3.1. Derivation of Main Results

Our rst step to solve the problem posed in Section 2 is to nd a
lower bound on the MSE (2). We need the following matrix property

for this purpose. For a positive de nite matrix R, let λmax(R) de-
note its maximum eigenvalue. Then from Weyl’s theorem [7, (9),pp.
75], we know that

λmax(R + xxH) ≤ λmax(R) + λmax(xxH) = λmax(R) + ‖x‖2

with equality if x is an eigenvector of R corresponding to eigenvalue
λmax(R). Applying this property repeatedly to (3), we get

λmax(φY Y ) ≤ σ2

2π
+

σ2o
2π

2X
i=1

g2i ‖Hi‖2 +
‚‚‚‚‚
2X

i=1

giaiHi

‚‚‚‚‚
2

φ

where for simplicity we have dropped the argument ω from the var-
ious quantities. We note that equality holds in this bound if

H1(ω) = αH2(ω), for some constant α. (5)

Using this bound we get that

φHsY φ−1
Y Y φsY ≥ λmin(φ

−1
Y Y )‖φsY ‖2 = ‖φsY ‖2

λmax(φY Y )

≥ ‖P2

i=1
giaiHi‖2φ2

D(ω)
(6)

where

D(ω) :=
σ2

2π
+

σ2o
2π

2X
i=1

g2i ‖Hi‖2 + ‖
2X

i=1

giaiHi‖2φ.

We see that equality holds in (6) if (5) is true. Substituting (5) in (2),
we get

MSE ≥
Z π

−π

N(ω)

D(ω)
φ(ω)dω

where

N(ω) :=
σ2

2π
+

σ2o
2π

2X
i=1

g2i ‖Hi(ω)‖2. (7)

Expanding the term ‖P2

i=1
giaiHi(ω)‖2 in the denominator D(ω)

and using

g1g2a1a2Re
“

HH
1 (ω)H2(ω)

”
≤ |g1g2a1a2|‖H1(ω)‖‖H2(ω)‖

(8)
for the cross-term, we get,

MSE ≥
Z π

−π

N(ω)φ(ω)dω

N(ω) +
`P

2

i=1
|giai|‖Hi(ω)‖

´2
φ(ω)

=: U(H1, H2)

and equality holds if (5) is true and equality holds in (8). We note
that U(H1, H2) is a lower bound on the MSE and minimizing it
under the power constraints (1) yields a lower bound on MSE∗. If
the lters that minimize U(H1, H2) satisfy (5) and (8) with equality,
then the lower bound on MSE∗ is tight. We show below that this is
indeed the case. For convenience let

Ai,b(ω) := |Hi,b(ω)|2

and Ai(ω) = [Ai,1(ω), ..., Ai,B(ω)]
T .

Lemma 1 There exist lters (H1, H2) which minimize the lower
bound U(H1, H2) under (1), satisfy condition (5), satisfy (8) with
equality, and therefore satisfy A1(ω) = A2(ω).
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Proof: Writing U(H1, H2) as a function of (A1, A2):

U(A1, A2)

=

Z π

−π

N(ω)φ(ω)dω

N(ω) +

„P2

i=1
|giai|

qPB

b=1
Ai,b(ω)

«2
φ(ω)

.

The power constraints areZ π

−π

Ai,b(ω)φ(ω)dω ≤ P, i = 1, 2; b = 1, ..., B.

Now let

Ā =
|g1|A1 + |g2|A2

|g1|+ |g2| .

Since the power constraints are linear in (A1, A2), the pair (Ā, Ā)
satis es the power constraints. Moreover, since N(ω) given by (7)
is a linear function of (A1, A2) and since the square-root function
is concave, we get U(Ā, Ā) ≤ U(A1, A2). Thus it follows that
U(A1, A2) is minimized for some A1(ω) = A2(ω), and we denote
this common value by

C(ω) = [C1(ω), ..., CB(ω)]
T = A1(ω).

For choosing the lters, we note that we are completely free to choose
the phase responses since the power constraints do not depend on
them. So we choose H1(ω) = sign(g1g2a1a2)H2(ω) such that
|H2,b(ω)|2 = Cb(ω), b = 1, ..., B. It is easy to check that this
ensures equality in (8) and (5) also holds.

Let C̃(ω) =
PB

b=1
Cb(ω). The problem of nding the best lin-

ear transmitter now reduces to nding a C(ω) = [C1(ω), ..., CB(ω)]
that minimizes

MSE =

Z π

−π

N(ω)φ(ω)dω

N(ω) + (|g1a1|+ |g2a2|)2C̃(ω)φ(ω)

with N(ω) =
σ2

2π
+

σ2o
2π

(g21 + g22)C̃(ω)

(9)

subject to Z π

−π

Cb(ω)φ(ω)dω ≤ P, b = 1, ..., B. (10)

We note that the MSE (9) depends only on C̃(ω). The power con-
straints (10) imply thatZ π

−π

C̃(ω)φ(ω)dω ≤ BP. (11)

If we minimize the MSE (9) w.r.t. C̃(ω) subject to constraint (11),
then we get a lower bound on the MSE (since constraint (11) is
weaker than conditions (10)). However, the resulting lower bound
is tight since we can choose Cb,∗(ω) = C̃∗(ω)/B, which attains
the lower bound with equality and satis es (10). Thus to nd MSE∗

we have to minimize the convex function (9) of C̃(ω) subject to the
linear constraint (11). Let [x]+ = max{0, x}. Using [8, Theorem
4.4.1, pp. 87] it can be veri ed that the solution is given by

C̃∗(ω) =
σ(|g1a1|+ |g2a2|)√

2π

"
λ∗ −

s
σ2/2π

(|g1a1|+ |g2a2|)φ(ω)

#+

×
p

φ(ω)
σ2o
2π

(g21 + g22) + (|g1a1|+ |g2a2|)2φ(ω)
(12)

where λ∗ is chosen to ensure equality in (11). Due to space con-
straints we do not show the tedious (but straightforward) calculations
involved in deriving the above expression. To summarize, we have
shown the following.

Proposition 1 There exists an optimal linear transmitter that satis-
es:

• Hi,b(ω) = Hi,1(ω), i = 1, 2, b = 1, ..., B.

• H1,b(ω) = sign(g1g2a1a2)H2,b(ω), b = 1, ..., B.

• |H1,1(ω)|2 = C̃∗(ω)/B, where C̃∗(ω) is given by (12).

• MSE∗ is obtained by substituting (12) in (9).

Thus the two sensors use the same transmit lters except for the
constant factor of ±1. The bandwidth expansion is exploited merely
by repeating the transmission B times. For simplicity of discussion,
we assume that g1 ≥ 0, g2 ≥ 0, a1 = a2 = 1, B = 1 below. If the
source is white, then φ(ω) = 1 and from (12) we get that uncoded
transmission is the optimal linear transmitter. For a whitening lter
of a colored source C̃(ω) = constant/φ(ω), which is different from
that (12) for the optimal linear lter. Hence for a colored source,
the whitening lter is sub-optimal. The nature of the optimal lter
simpli es signi cantly in the limit as σ → 0 with σo/σ xed to
some value γ. From (9) we get that

lim
σ→0

σo/σ→γ

MSE
σ2

=
γ2(g21 + g22)

(g1 + g2)2
+

1

2π

Z π

−π

dω

(g1 + g2)2C̃(ω)
.

Using a Lagrange multiplier we can easily minimize the above limit
subject to (11). This gives us that as σ → 0 with σo/σ → γ,

C̃∗(ω) → BPp
φ(ω)

R π
−π

p
φ(ω)dω

(13)

and

lim
σ→0

σo/σ→γ

MSE∗

σ2
=

γ2(g21 + g22)

(g1 + g2)2
+

nR π
−π

p
φ(ω)dω

o2
2πP (g1 + g2)2

. (14)

In contrast, for a whitening lter C̃(ω) is inversely proportional to
φ(ω). The loss of the whitening lter w.r.t. the optimal linear trans-
mitter is plotted for an example in the next section.

3.2. Single Sensor Case

Consider the special case when g1 = 1, g2 = 0, σ2o = 0 and the
source is Gaussian. The main reason for considering this case is
that the Shannon limit can be found. For this special case, we now
compare the optimal linear transmitter, the whitening lter transmit-
ter, and the Shannon limit for achievable MSE using any code. The
MSE for the whitening lter is given by:

MSEW =
σ2

σ2 + P

Z π

−π

φ(ω)dω =
σ2

σ2 + P
.

For the optimal linear transmitter, from (14) with γ = 0 we get that

lim
σ→0

MSE∗

σ2
=

1

2πP

jZ π

−π

p
φ(ω)dω

ff2
.

Thus we get

lim
σ→0

MSE∗
MSEW

=

nR π
−π

p
φ(ω)dω

o2
2π
R π
−π

φ(ω)dω
=: r1.
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The Cauchy-Schwarz inequality easily veri es that the above limit
is upper bounded by 1 with equality iff φ(ω) = 1, that is, when the
source is white.

Now using Shannon theory we can also nd the least MSE that
can be achieved using any code. For this purpose assume that φ(ω) ≥
δ > 0. Then for D < δ the rate-distortion function is given by ([9,
Theorem 4.6.2, pp. 133])

R(D) =
1

2
log

„
Q1
D

«

where

Q1 = 2π exp

„
1

2π

Z π

−π

ln(φ(ω))dω

«
is the one-step prediction error of the source ([6]) and ln is the loga-
rithm w.r.t. the natural base. Since for g1 = 1, g2 = 0, the channel
is a single-user AWGN channel, we can achieve D < δ if

R(D) <
1

2
log

„
1 +

P

σ2

«
=⇒ D >

Q1

1 + P

σ2

.

(We assume that P/σ2 is large enough so that the lower bound above
is less than δ, which is necessary for the validity of the expression for
R(D).) We know from the source-channel separation theorem [9]
that there exist codes that come arbitrarily close to the above lower
bound. Thus (for suf ciently large P/σ2) the smallest achievable
MSE using any code is

MSE∗∗ =
Q1

1 + P

σ2

.

Thus we get that

lim
σ→0

MSE∗∗
MSE∗

=
2πQ1nR π

−π

p
φ(ω)dω

o2 =: r2.

For transmitting a white Gaussian source over a Gaussian channel
with B = 1, it is well known that uncoded transmission is optimal
([10]) and the above limit is unity in this case. However for colored
sources, linear codes lead to a loss, as shown in the example below.

Example: Consider a rst-order autoregressive Gaussian process
with c(k) = ρ|k|, ρ ∈ (−1, 1). For this process

φ(ω) =
(1− ρ2)

2π(1− 2ρ cos(ω) + ρ2)

and Q1 = 1−ρ2. In Figure 1 we have plotted the loss of the whiten-
ing lter and the optimal lter w.r.t. the Shannon limit as σ → 0
(which are respectively given by r1r2 and r2) for various values of ρ.
We see that in the high SNR regime, substantial gain can be achieved
by using the optimal lter; for ρ = 0.7, the optimal lter is about
1.4 dB from Shannon limit but it is 1.5 dB better than the whitening
lter.

4. CONCLUSIONS

In this paper, we derived distributed linear transceivers that mini-
mize the MSE for transmitting independently corrupted versions of
a colored source over a Gaussian MAC. The key conclusion is that
the optimal transceiver can signi cantly outperform the whitening
transmitter. In the single sensor case, the loss of linear processing
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Fig. 1. The optimal lter has signi cantly less loss compared to the
whitening lter for ρ > 0.5.

w.r.t. the Shannon limit may be acceptable, and due to its simplicity,
linear processing is an attractive choice. Our focus was on identi-
fying the limits of linear processing. Future investigation into im-
plementation aspects in the absence of channel information and with
nite-precision arithmetic is needed to understand the true merits of

linear processing in sensor communication.
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